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Multidimensional Fourier methods

We consider Fourier methods in more than one dimension d . We
start with Fourier series of d-variate, 2π-periodic functions
f : Td → C. In particular, we present basic properties of the
Fourier coefficients and learn about their decay for smooth
functions. Then we deal with Fourier transforms of functions on
Rd . We show that the Fourier transform is a linear, bijective
operator on the Schwartz space S(Rd) of rapidly decaying
functions as well as on the space S ′(Rd) of tempered distributions.
Using the density of S(Rd) in L1(Rd) and L2(Rd), the Fourier
transform on these spaces is discussed. The Poisson summation
formula and the Fourier transforms of radial functions are also
addressed. As in the univariate case, any numerical application of
d-dimensional Fourier series or Fourier transforms leads to
d-dimensional discrete Fourier transforms. We present the basic
properties of the two-dimensional and higher dimensional DFT,
including the convolution property and the aliasing formula.
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Multidimensional Fourier series

We consider d-variate, 2π-periodic functions f : Rd → C, i.e.,
functions fulfilling f (x) = f (x + 2π k) for all x = (xj)

d
j=1 ∈ Rd and

all k = (kj)
d
j=1 ∈ Rd . Note that the function f is 2π-periodic in

each variable xj , j = 1, . . . , d , and that f is uniquely determined by
its restriction to the hypercube [0, 2π)d . Hence f can be
considered as a function defined on the d-dimensional torus
Td = Rd/(2π Zd). For fixed n = (nj)

d
j=1 ∈ Zd , the d-variate

complex exponential

ei n·x =
d∏

j=1

ei nj xj , x ∈ Rd ,

is 2π-periodic, where n · x := n1 x1 + . . .+ nd xd is the inner
product of n ∈ Zd and x ∈ Rd .
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Further, we use the Euclidean norm ‖x‖2 := (x · x)1/2 of x ∈ Rd .
For a multi-index α = (αk)dk=1 ∈ Nd

0 with |α| = α1 + . . .+ αd , we
use the notation

xα :=
d∏

k=1

xαk
k .

Let C (Td) be the Banach space of continuous functions
f : Td → C equipped with the norm

‖f ‖C(Td ) := max
x∈Td
|f (x)| .

By C r (Td), r ∈ N, we denote the Banach space of r -times
continuously differentiable functions with the norm

‖f ‖C r (Td ) :=
∑
|α|≤r

max
x∈Td
|Dαf (x)| ,

where

Dαf (x) :=
∂α1

∂xα1
1

. . .
∂αd

∂xαd
d

f (x)

denotes the partial derivative with the multi-index
α = (αj)

d
j=1 ∈ Nd

0 and |α| ≤ r .
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For 1 ≤ p ≤ ∞, let Lp(Td) denote the Banach space of all
measurable functions f : Td → C with finite norm

‖f ‖Lp(Td ) :=


(

1
(2π)d

∫
[0, 2π]d |f (x)|p dx

)1/p
1 ≤ p <∞ ,

ess sup {|f (x)| : x ∈ [0, 2π]d} p =∞ ,

where almost everywhere equal functions are identified. The spaces
Lp(Td) with 1 < p <∞ are continuously embedded as

L1(Td) ⊃ Lp(Td) ⊃ L∞(Td) .

By the periodicity of f ∈ L1(Td) we have∫
[0, 2π]d

f (x) dx =

∫
[−π, π]d

f (x) dx .
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For p = 2, we obtain the Hilbert space L2(Td) with the inner
product and norm

〈f , g〉L2(Td ) :=
1

(2π)d

∫
[0, 2π]d

f (x) g(x) dx , ‖f ‖L2(Td ) :=
√
〈f , f 〉L2(Td )

for arbitrary f , g ∈ L2(Td). For all f , g ∈ L2(Td) it holds the
Cauchy–Schwarz inequality

|〈f , g〉L2(Td )| ≤ ‖f ‖L2(Td ) ‖g‖L2(Td ) .
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The set of all complex exponentials
{

ei k·x : k ∈ Zd
}

forms an
orthonormal basis of L2(Td). A linear combination of complex
exponentials

p(x) =
∑
k∈Zd

ak ei k·x

with only finitely many coefficients ak ∈ C \ {0} is called d-variate,
2π-periodic trigonometric polynomial. The degree of p is the
largest number ‖k‖1 = |k1|+ . . .+ |kd | such that ak 6= 0 with
k = (kj)

d
j=1 ∈ Zd . The set of all trigonometric polynomials is

dense in Lp(Td) for 1 ≤ p <∞ (see [16, p. 168]).
For f ∈ L1(Td) and arbitrary k ∈ Zd , the kth Fourier coefficient of
f is defined as

ck(f ) := 〈f (x), ei k·x〉L2(Td ) =
1

(2π)d

∫
[0, 2π]d

f (x) e−ik·x dx .

As in the univariate case, the kth modulus and phase of f are
defined by |ck(f )| and arg ck(f ), respectively. Obviously, we have

|ck(f )| ≤ 1

(2π)d

∫
[0, 2π]d

|f (x)| dx = ‖f ‖L1(Td ) .
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The Fourier coefficients possess similar properties as in the
univariate setting.

Lemma 1

The Fourier coefficients of any functions f , g ∈ L1(Td) have the
following properties for all k = (kj)

d
j=1 ∈ Zd :

1 Uniqueness: If ck(f ) = ck(g) for all k ∈ Zd , then f = g
almost everywhere.

2 Linearity: For all α, β ∈ C,

ck(α f + β g) = α ck(f ) + β ck(g) .

3 Translation and modulation: For all x0 ∈ [0, 2π)d and
k0 ∈ Zd ,

ck

(
f (x− x0)

)
= e−i k·x0 ck(f ) ,

ck

(
e−i k0·x f (x)

)
= ck+k0(f ) .

9 / 302



Lemma 1 (continue)

4 Differentiation: For f ∈ L1(Td) with partial derivative
∂f
∂xj
∈ L1(Td),

ck

( ∂f
∂xj

)
= i kj ck(f ) .

5 Convolution: For f , g ∈ L1(Td), the d-variate convolution

(f ∗ g)(x) :=
1

(2π)d

∫
[0, 2π]d

f (y) g(x− y) dy , x ∈ Rd ,

is contained in L1(Td) and we have

ck(f ∗ g) = ck(f ) ck(g) .

The proof of Lemma 1 can be given similarly as in the univariate
case and is left to the reader.
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Remark 2

The differentiation property 1 of Lemma 1 can be generalized.
Assume that f ∈ L1(Rd) possesses partial derivatives
Dαf ∈ L1(Td) for all multi-indices α ∈ Nd

0 with |α| := ‖α‖1 ≤ r ,
where r ∈ N is fixed. Repeated application of the differentiation
property 1 of Lemma 1 provides

ck(Dαf ) = (i k)α ck(f ) (1)

for all k ∈ Zd , where (i k)α denotes the product (i k1)α1 . . . (i kd)αd

with the convention 00 = 1.
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Remark 3

If the 2π-periodic function

f (x) =
d∏

j=1

fj(xj)

is the product of univariate functions fj ∈ L1(T), j = 1, . . . , d , then
we have for all k = (kj)

d
j=1 ∈ Zd

ck(f ) =
d∏

j=1

ckj (fj) .
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Example 4

Let n ∈ N0 be given. The nth Dirichlet kernel Dn : Td → C

Dn(x) :=
n∑

k1=−n
. . .

n∑
kd=−n

ei k·x

is a trigonometric polynomial of degree d n. It is the product of
univariate nth Dirichlet kernels

Dn(x) =
d∏

j=1

Dn(xj) .
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For arbitrary n ∈ N0, the nth Fourier partial sum of f ∈ L1(Td) is
defined by

(Snf )(x) :=
n∑

k1=−n
. . .

n∑
kd=−n

ck(f ) ei k·x . (2)

Using the nth Dirichlet kernel Dn, the nth Fourier partial sum Snf
can be represented as convolution Snf = f ∗ Dn.
For f ∈ L1(Td), the d-dimensional Fourier series∑

k∈Zd

ck(f ) ei k·x (3)

is called convergent to f in L2(Td), if the sequence of Fourier
partial sums (2) converges to f , i.e.,

lim
n→∞

‖f − Snf ‖L2(Td ) = 0 .
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Then it holds the following result on convergence in L2(Td):

Theorem 5

Every function f ∈ L2(Td) can be expanded into the Fourier series
(3) which converges to f in L2(Td). Further the Parseval equality

‖f ‖2
L2(Td ) =

1

(2π)d

∫
[0, 2π]d

|f (x)|2 dx =
∑
k∈Zd

|ck(f )|2 (4)

is fulfilled.
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Now we investigate the relation between the smoothness of the
function f : Td → C and the decay of its Fourier coefficients ck(f )
as ‖k‖2 →∞. We show that the smoother a function f : Td → C
is, the faster its Fourier coefficients ck(f ) tend to zero as
‖k‖2 →∞ (cf. Lemma of Riemann-Lebesgue and Theorem of
Bernstein for d = 1).

Lemma 6

1. For f ∈ L1(Td) we have

lim
‖k‖2→∞

ck(f ) = 0 . (5)

2. Let r ∈ N be given. If f and its partial derivatives Dαf are
contained in L1(Td) for all multi-indices α ∈ Nd

0 with |α| ≤ r , then

lim
‖k‖2→∞

(1 + ‖k‖r2) ck(f ) = 0 . (6)
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Proof:
1. If f ∈ L2(Td), then (5) is a consequence of the Parseval
equality (4). For all ε > 0, any function f ∈ L1(Td) can be
approximated by a trigonometric polynomial p of degree n such
that ‖f − p‖L1(Td ) < ε. Then the Fourier coefficients of

r := f − p ∈ L1(Td) fulfill |ck(r)| ≤ ‖r‖L1(Td ) < ε for all k ∈ Zd .

Further we have ck(p) = 0 for all k ∈ Zd with ‖k‖1 > n, since the
trigonometric polynomial p has the degree n. By the linearity of
the Fourier coefficients and by ‖k‖1 ≥ ‖k‖2, we obtain for all
k ∈ Zd with ‖k‖2 > n that

|ck(f )| = |ck(p) + ck(r)| = |ck(r)| < ε .
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2. We consider a fixed multi-index k ∈ Zd \ {0} with
|k`| = maxj=1,...,d |kj | > 0. From (1) it follows that

(i k`)
r ck(f ) = ck

(∂r f
∂x r`

)
.

Using ‖k‖2 ≤
√
d |k`|, we obtain the estimate

‖k‖r2 |ck(f )| ≤ d r/2 |ck

(∂r f
∂x r`

)
| ≤ d r/2 max

|α|=r
|ck(Dαf )| .

Then from (5) it follows the assertion (6).
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Now we consider the uniform convergence of d-dimensional Fourier
series.

Theorem 7

If f ∈ C (Td) has the property∑
k∈Zd

|ck(f )| <∞ , (7)

then the d-dimensional Fourier series (3) converges uniformly to f
on Td , i.e.,

lim
n→∞

‖f − Snf ‖C(Td ) = 0 .
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Proof: By (7), the Weierstrass criterion ensures that the Fourier
series (3) converges uniformly to a continuous function

g(x) :=
∑
k∈Zd

ck(f ) ei k·x.

Since f and g have the same Fourier coefficients, the uniqueness
property in Lemma 1 gives f = g on Td .
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Now we want to show that a sufficiently smooth function
f : Td → C fulfills condition (7). We need the following result:

Lemma 8

If 2 r > d , then ∑
k∈Zd\{0}

‖k‖−2 r
2 <∞ . (8)
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Proof: For all k = (kj)
d
j=1 ∈ Zd \ {0} we have ‖k‖2 ≥ 1. Using the

inequality of arithmetic and geometric means, it follows

(d + 1) ‖k‖2
2 ≥ d + ‖k‖2

2 =
d∑

j=1

(1 + k2
j ) ≥ d

( d∏
j=1

(1 + k2
j )
)1/d

and hence

‖k‖−2 r
2 ≤

(d + 1

d

)r d∏
j=1

(1 + k2
j )−r/d .

Consequently, we obtain∑
k∈Zd\{0}

‖k‖−2 r
2 ≤

(d + 1

d

)r ∑
k1∈Z

(1 + k2
1 )−r/d . . .

∑
kd∈Z

(1 + k2
d)−r/d

=
(d + 1

d

)r (∑
k∈Z

(1 + k2)−r/d
)d
<
(d + 1

d

)r (
1 + 2

∞∑
k=1

k−2 r/d
)d
<∞.
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Theorem 9

If f ∈ C r (Td) with 2 r > d , then the condition (7) is fulfilled and
the d-dimensional Fourier series (3) converges uniformly to f on
Td .

Proof: By assumption, each partial derivative Dαf with |α| ≤ r is
continuous on Td . Hence we have Dαf ∈ L2(Td) such that by (1)
and the Parseval equality (4),∑

|α|=r

∑
k∈Zd

|ck(f )|2 k2α <∞ ,

where k2α denotes the product k2α1
1 . . . k2αd

d with 00 := 1. Then
there exists a positive constant c , depending only on the dimension
d and on r , such that ∑

|α|=r

k2α ≥ c ‖k‖2 r
2 .
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By the Cauchy–Schwarz inequality in `2(Zd) and by Lemma 8 we
obtain∑
k∈Zd\{0}

|ck(f )| ≤
∑

k∈Zd\{0}

|ck(f )|
( ∑
|α|=r

k2α
)1/2

c−1/2 ‖k‖−r2

≤
( ∑
|α|=r

∑
k∈Zd

|ck(f )|2 k2α
)1/2 ( ∑

k∈Zd\{0}

‖k‖−2r
2

)1/2
c−1/2 <∞ .
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Multidimensional Fourier transform

Let C0(Rd) be the Banach space of all functions f : Rd → C,
which are continuous on Rd and vanish as ‖x‖2 →∞, with norm

‖f ‖C0(Rd ) := max
x∈Rd
|f (x)| .

Let Cc(Rd) be the subspace of all continuous functions with
compact supports. By C r (Rd), r ∈ N ∪ {∞}, we denote the set of
r -times continuously differentiable functions and by C r

c (Rd) the set
of r -times continuously differentiable functions with compact
supports.
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For 1 ≤ p ≤ ∞, let Lp(Rd) be the Banach space of all measurable
functions f : Rd → C with finite norm

‖f ‖Lp(Rd ) :=

{ ( ∫
Rd |f (x)|p dx

)1/p
1 ≤ p <∞ ,

ess sup {|f (x)| : x ∈ Rd} p =∞ ,

where almost everywhere equal functions are identified.
In particular, we are interested in the Hilbert space L2(Rd) with
inner product and norm

〈f , g〉L2(Rd ) :=

∫
Rd

f (x) g(x) dx , ‖f ‖L2(Rd ) :=
( ∫

Rd

|f (x)|2 dx
)1/2

.
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Fourier transform on S(Rd)

By S(Rd), we denote the set of all functions ϕ ∈ C∞(Rd) with
the property xαDβϕ(x) ∈ C0(Rd) for all multi-indices α, β ∈ Nd

0 .

We define the convergence in S(Rd) as follows:

A sequence (ϕk)k∈N of functions ϕk ∈ S(Rd) converges to
ϕ ∈ S(Rd), if for all multi-indices α, β ∈ Nd

0 , the sequences(
xαDβϕk

)
k∈N converge uniformly to xαDβϕ on Rd .

We will write ϕk −→
S
ϕ as k →∞.

Then the linear space S(Rd) with this convergence is called
Schwartz space or space of rapidly decreasing functions. The name
is in honor of the French mathematician L. Schwartz (1915 –
2002).
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Any function ϕ ∈ S(Rd) is rapidly decreasing in the sense that for
all multi-indices α, β ∈ Nd

0 ,

lim
‖x‖2→∞

xαDβϕ(x) = 0 .

Introducing the seminorms

‖ϕ‖m := max
|β|≤m

‖(1 + ‖x‖2)m Dβϕ(x)‖C0(Rd ) , m ∈ N0 , (9)

we see that ‖ϕ‖0 ≤ ‖ϕ‖1 ≤ ‖ϕ‖2 ≤ . . . for ϕ ∈ S(Rd). Then we
can describe the convergence in the Schwartz space by means of
the seminorms (9):
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Lemma 10

For ϕk , ϕ ∈ S(Rd), we have ϕk −→
S
ϕ as k →∞ if and only if for

all m ∈ N0,
lim
k→∞

‖ϕk − ϕ‖m = 0 . (10)

Proof:
1. Let (10) be fulfilled for all m ∈ N0. Then for all
α = (αj)

d
j=1 ∈ Nd

0 \ {0} with |α| ≤ m, we get by the relation
between geometric and quadratic means that

|xα| ≤
(
α1x

2
1 + . . .+ αdx

2
d

|α|

)|α|/2

≤
(
x2

1 + . . .+ x2
d

)|α|/2 ≤ (1+‖x‖2)m

so that

|xαDβ(ϕk − ϕ)(x)| ≤ (1 + ‖x‖2)m |Dβ(ϕk − ϕ)(x)|.
Hence, for all β ∈ Nd

0 with |β| ≤ m, it holds

‖xαDβ(ϕk−ϕ)(x)‖C0(Rd ) ≤ sup
x∈Rd

(1+‖x‖2)m|Dβ(ϕk−ϕ)(x)| ≤ ‖ϕk−ϕ‖m.
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2. Assume that ϕk −→
S
ϕ as k →∞, i.e., for all α, β ∈ Nd

0 we have

lim
k→∞

‖xαDβ(ϕk − ϕ)(x)‖C0(Rd ) = 0 .

We consider multi-indices α, β ∈ Nd
0 with |α| ≤ m and |β| ≤ m

for m ∈ N. Since xm is convex, we use(
1 + x

2

)m

≤ 1 + xm

and obtain for x = ‖x‖2, with x ∈ Rd ,

(1 + ‖x‖2)m ≤ 2m(1 + ‖x‖m2 ) .

Since
∑d

j=1 |xj | ≥ ‖x‖2 and

d (1/2−1/m)
( d∑
j=1

|xj |m
)1/m ≥ ‖x‖2

for m ≥ 2 (see e.g. [19, formula (6.4)]), we see that∑d
j=1 |xj |m ≥ c ‖x‖m2 for all x ∈ Rd with some positive constant

c ≤ 1.
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Hence we obtain

(1+‖x‖2)m ≤ 2m(1+‖x‖m2 ) ≤ 2m
(

1+
1

c

d∑
j=1

|xj |m
)
≤ 2m

c

∑
|α|≤m

|xα| .

(11)
This implies that

‖(1+‖x‖2)m Dβ(ϕk−ϕ)(x)‖C0(Rd ) ≤
2m

c

∑
|α|≤m

‖xαDβ(ϕk−ϕ)(x)‖C0(Rd )

and hence

‖ϕk − ϕ‖m ≤
2m

c
max
|β|≤m

∑
|α|≤m

‖xαDβ(ϕk − ϕ)(x)‖C0(Rd )

such that limk→∞ ‖ϕk − ϕ‖m = 0.
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Remark 11

The Schwartz space S(Rd) is a complete metric space with the
metric

ρ(ϕ,ψ) :=
∞∑

m=0

1

2m
‖ϕ− ψ‖m

1 + ‖ϕ− ψ‖m
, ϕ, ψ ∈ S(Rd) ,

since by Lemma 10 the convergence ϕk −→
S
ϕ as k →∞ is

equivalent to
lim
k→∞

ρ(ϕk , ϕ) = 0 .

This metric space is complete by the following reason: Let (ϕk)k∈N
be a Cauchy sequence with respect to ρ. Then, for every α,
β ∈ Nd

0 ,
(
xαDβϕk

)
k∈N is a Cauchy sequence in Banach space

C0(Rd) and converges uniformly to a function ψα,β. Then, by
definition of S(Rd), it follows ψα,β(x) = xαDβψ0,0(x) with
ψ0,0 ∈ S(Rd) and hence ϕk −→

S
ψ0,0 as k →∞. Note that the

metric ρ is not generated by a norm, since ρ(c ϕ, 0) 6= |c | ρ(ϕ, 0)
for all c ∈ C \ {0} with |c | 6= 1 and non-vanishing ϕ ∈ S(Rd).
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Clearly, it holds S(Rd) ⊂ C0(Rd) and S(Rd) ⊂ Lp(Rd),
1 ≤ p <∞, by the following argument: For each ϕ ∈ S(Rd) we
have by (9)

|ϕ(x)| ≤ ‖ϕ‖d+1 (1 + ‖x‖2)−d−1

for all x ∈ Rd . Then, using polar coordinates with r = ‖x‖2, we
obtain ∫

Rd

|ϕ(x)|p dx ≤ ‖ϕ‖pd+1

∫
Rd

(1 + ‖x‖2)−p(d+1) dx

≤ C

∫ ∞
0

rd−1

(1 + r)p(d+1)
dr ≤ C

∫ ∞
0

1

(1 + r)2
dr <∞

with some constant C > 0. Hence the Schwartz space S(Rd) is
contained in L1(Rd) ∩ L2(Rd).
Obviously, C∞c (Rd) ⊂ S(Rd). Since C∞c (Rd) is dense in Lp(Rd),
p ∈ [1,∞), see e.g. [64, Satz 3.6], we also have that S(Rd) is
dense in Lp(Rd), p ∈ [1,∞). Summarizing we find that

C∞c (Rd) ⊂ S(Rd) ⊂ C∞0 (Rd) ⊂ C∞(Rd) . (12)
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Example 12

A typical function in C∞c (Rd) ⊂ S(Rd) is the test function

ϕ(x) :=

{
exp

(
− 1

1−‖x‖2
2

)
‖x‖2 < 1 ,

0 ‖x‖2 ≥ 1 .
(13)

The compact support of ϕ is the unit ball {x ∈ Rd : ‖x‖2 ≤ 1}.
Any Gaussian function e−a ‖x‖

2
2 with a > 0 is contained in S(Rd),

but it is not in C∞c (Rd).
For any n ∈ N, the function

f (x) := (1 + ‖x‖2
2)−n ∈ C∞0 (Rd)

does not belong to S(Rd), since ‖x‖2n
2 f (x) does not tend to zero

as ‖x‖2 →∞.
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Example 13

In the univariate case, each product of a polynomial and the
Gaussian function e−x

2/2 is a rapidly decreasing function. The
Hermite functions hn(x) = Hn(x) e−x

2/2, n ∈ N0, are contained in
S(R) and form an orthogonal basis of L2(R) (see lecture last year).
Here Hn denotes the nth Hermite polynomial. Thus S(R) is dense
in L2(R). For each multi-index n = (nj)

d
j=1 ∈ Nd

0 , the function

xn e−‖x‖
2
2/2, x = (xj)

d
j=1 ∈ Rd , is a rapidly decreasing function. The

set of all functions

hn(x) := e−‖x‖
2
2/2

d∏
j=1

Hnj (xj) ∈ S(Rd) , n ∈ Nd
0 ,

is an orthogonal basis of L2(Rd). Further S(Rd) is dense in
L2(Rd).
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For f ∈ L1(Rd) we define its Fourier transform at ω ∈ Rd by

F f (ω) = f̂ (ω) :=

∫
Rd

f (x) e−i x·ω dx . (14)

Since

|f̂ (ω)| ≤
∫
Rd

|f (x)|dx = ‖f ‖L1(Rd ) ,

the Fourier transform (14) exists for all ω ∈ Rd and is bounded on
Rd .

Example 14

Let L > 0 be given. The characteristic function f (x) of the
hypercube [−L, L]d ⊂ Rd is the product

∏d
j=1 χ[−L, L](xj) of

univariate characteristic functions. The related Fourier transform
reads as follows

f̂ (ω) = (2L)d
d∏

j=1

sinc(Lωj) .
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Example 15

The Gaussian function f (x) := e−‖σx‖2
2/2 with fixed σ > 0 is the

product of the univariate functions f (xj) = e−σ
2 x2

j /2 such that

f̂ (ω) =
(2π

σ2

)d/2
e−‖ω‖

2
2/(2σ2) .
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By the following theorem the Fourier transform maps the Schwartz
space S(Rd) into itself.

Theorem 16

For every ϕ ∈ S(Rd), it holds Fϕ ∈ S(Rd), i.e.,
F : S(Rd)→ S(Rd). Furthermore, Dα(Fϕ) ∈ S(Rd) and
F(Dαϕ) ∈ S(Rd) for all α ∈ Nd

0 , and we have

Dα(Fϕ) = (−i)|α|F(xα ϕ) , (15)

ωα (Fϕ) = (−i)|α|F(Dα ϕ) . (16)

where the partial derivative Dα in (15) acts on ω and in (16) on x.
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Proof: 1. Let α ∈ Nd
0 be an arbitrary multi-index with |α| ≤ m.

By definition, each rapidly decreasing function ϕ ∈ S(Rd) has the
property

lim
‖x‖2→∞

ϕ(x) (1 + ‖x‖2)m+d+1 = 0 .

Therefore we can change the order of differentiation and
integration in Dα(Fϕ) such that

Dα(Fϕ)(ω) =

∫
Rd

(−i x)α ϕ(x) e−i x·ω dx = (−i)|α|F(xα ϕ)(ω) .

Note that xα ϕ ∈ S(Rd). Thus Fϕ belongs to C∞(Rd).
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2. For simplicity, we show (16) only for α = e1 = (δj−1)dj=1. From
the theorem of Fubini it follows that

ω1 (Fϕ)(ω) =

∫
Rd

ω1 e−i x·ω ϕ(x) dx

=

∫
Rd−1

exp
(
− i

d∑
j=2

xjωj

)( ∫
R
ω1 e−i x1ω1 ϕ(x) dx1

)
dx2 . . . dxd .

For the inner integral, integration by parts yields∫
R
ω1 e−i x1ω1 ϕ(x) dx1 = lim

r→∞

∫ r

−r
i

d

dx1

(
e−ix1ω1

)
ϕ(x) dx1

= lim
r→∞

(
i e−i x1ω1 ϕ(x)

∣∣x1=r

x1=−r − i

∫ r

−r
e−i x1ω1 De1ϕ(x) dx1

)
= 0− i

∫
R

e−i x1ω1 De1ϕ(x) dx1 .

Thus we obtain

ω1 (Fϕ)(ω) = −iF(De1ϕ)(ω) .

For an arbitrary multi-index α ∈ Nd
0 , the formula (16) follows by
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3. From (15) and (16) it follows for all multi-indices α, β ∈ Nd
0

and each ϕ ∈ S(Rd),

ωα [Dβ(Fϕ)] = (−i)|β|ωαF(xβϕ) = (−i)|α|+|β|F [Dα(xβϕ)] .
(17)

Hence ωα [Dβ(Fϕ)](ω) is uniformly bounded on Rd , since

|ωα [Dβ(Fϕ)](ω)| = |F [Dα(xβϕ)](ω)| ≤
∫
Rd

|Dα(xβϕ)|dx <∞ .

Thus we see that Fϕ ∈ S(Rd).
Based on the above theorem we can show that the Fourier
transform is indeed a bijection on S(Rd).
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Theorem 17

The Fourier transform F : S(Rd)→ S(Rd) is a linear, bijective
mapping. Further the Fourier transform is continuous with respect
to the convergence in S(Rd), i.e., for ϕk , ϕ ∈ S(Rd), ϕk −→

S
ϕ as

k →∞ implies Fϕk −→
S
Fϕ as k →∞. For all ϕ ∈ S(Rd) and all

x ∈ Rd , the inverse Fourier transform F−1 : S(Rd)→ S(Rd) is
given by

(F−1ϕ)(x) :=
1

(2π)d

∫
Rd

ϕ(ω) ei x·ω dω . (18)

The inverse Fourier transform is also a linear, bijective mapping on
S(Rd) which is continuous with respect to the convergence in
S(Rd). Further for all ϕ ∈ S(Rd) and all x ∈ Rd it holds the
Fourier inversion formula

ϕ(x) =
1

(2π)d

∫
Rd

(Fϕ)(ω) ei x·ω dω .
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Proof: 1. By Theorem 16 the Fourier transform F maps the
Schwartz space S(Rd) into itself. The linearity of the Fourier
transform F follows from those of the integral operator (14). For
arbitrary ϕ ∈ S(Rd), for all α, β ∈ Nd

0 with |α| ≤ m and |β| ≤ m,
and for all ω ∈ Rd we obtain by (17)

|ωβ Dα(Fϕ)(ω)| = |F
(
Dβ(xα ϕ(x))

)
(ω)| ≤

∫
Rd

|Dβ(xα ϕ(x))| dx

≤ C

∫
Rd

(1 + ‖x‖2)m
∑
|γ|≤m

|Dγϕ(x)|dx

≤ C

∫
Rd

(1 + ‖x‖2)m+d+1

(1 + ‖x‖2)d+1

∑
|γ|≤m

|Dγϕ(x)|dx

≤ C

∫
Rd

dx

(1 + ‖x‖2)d+1
‖ϕ‖m+d+1 .
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By
‖Fϕ‖m = max

|γ|≤m
‖(1 + ‖ω‖2)m DγFϕ(ω)‖C0(Rd )

we see that
‖Fϕ‖m ≤ C ′ ‖ϕ‖m+d+1 (19)

for all ϕ ∈ S(Rd) and each m ∈ N0, where C ′ > 0 is a constant.
Now we show the continuity of the Fourier transform. Assume that
ϕk −→

S
ϕ as k →∞ for ϕk , ϕ ∈ S(Rd). Applying the inequality

(19) to ϕk − ϕ, we obtain for all m ∈ N0

‖Fϕk −Fϕ‖m ≤ C ′ ‖ϕk − ϕ‖m+d+1 .

From Lemma 10 it follows that Fϕk −→
S
Fϕ as k →∞.

2. The mapping

(F̃ϕ)(x) :=
1

(2π)d

∫
Rd

ϕ(ω) ei x·ω dω , ϕ ∈ S(Rd) ,

is a linear continuous mapping on S(Rd) into itself by the first
step of this proof, since (F̃ϕ)(x) = 1

(2π)d
(Fϕ)(−x).
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Now we demonstrate that F̃ is the inverse mapping of F For
arbitrary ϕ, ψ ∈ S(Rd) it holds by Fubini’s theorem∫
Rd

(Fϕ)(ω)ψ(ω) eiω·x dω =

∫
Rd

( ∫
Rd

ϕ(y) e−iω·y dy
)
ψ(ω) eiω·x dω

=

∫
Rd

ϕ(y)
( ∫

Rd

ψ(ω) ei (x−y)·ω dω
)
dy

=

∫
Rd

ϕ(y) (Fψ)(y − x) dy =

∫
Rd

ϕ(z + x) (Fψ)(z) dz .

For the Gaussian function ψ(x) := e−‖εx‖
2
2/2 with ε > 0, we have

by Example 15 that (Fψ)(ω) =
(

2π
ε2

)d/2
e−‖ω‖

2
2/(2ε2) and

consequently∫
Rd

(Fϕ)(ω) e−‖εω‖
2
2/2eiω·x dω =

(2π

ε2

)d/2
∫
Rd

ϕ(z + x) e−‖z‖
2
2/(2ε2) dz

= (2π)d/2

∫
Rd

ϕ(ε y + x) e−‖y‖
2
2/2 dy .
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Since |(Fϕ)(ω) e−‖εω‖
2
2/2| ≤ |Fϕ(ω)| for all ω ∈ Rd and

Fϕ ∈ S(Rd) ⊂ L1(Rd), we obtain by Lebesgue’s dominated
convergence theorem(

F̃(Fϕ)
)
(x) =

1

(2π)d
lim
ε→0

∫
Rd

(Fϕ)(ω) e−‖εy‖
2
2/2 eiω·x dω

= (2π)−d/2 lim
ε→0

∫
Rd

ϕ(x + εy) e−‖y‖
2
2/2 dy

= (2π)−d/2ϕ(x)

∫
Rd

e−‖y‖
2
2/2 dy = ϕ(x) ,

since by the Fourier transform of the Gaussian function∫
Rd

e−‖y‖
2
2/2 dy =

( ∫
R

ey
2/2 dy

)d
= (2π)d/2 .

From F̃(Fϕ) = ϕ it follows immediately that F(F̃ϕ) = ϕ for all
ϕ ∈ S(Rd). Hence, F̃ = F−1 and F is bijective.
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The convolution f ∗ g of two d-variate functions f , g ∈ L1(Rd) is
defined by

(f ∗ g)(x) :=

∫
Rd

f (y) g(x− y) dy .

The convolution theorem of Young carries over to the multivariate
setting. Moreover, by the following lemma the product and the
convolution of two rapidly decreasing functions are again rapidly
decreasing.

Lemma 18

For arbitrary ϕ, ψ ∈ S(Rd), the product ϕψ and the convolution
ϕ ∗ ψ are in S(Rd) too and it holds F(ϕ ∗ ψ) = ϕ̂ ψ̂.
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Proof: 1. By the Leibniz’ formula

Dα(ϕψ) =
∑
β≤α

(
α

β

)
(Dβϕ) (Dα−βψ)

with α = (αj)
d
j=1 ∈ Nd

0 , where the sum runs over all

β = (βj)
d
j=1 ∈ Nd

0 with βj ≤ αj for j = 1, . . . , d , and where(
α

β

)
:=

α1! . . . αd !

β1! . . . βd ! (α1 − β1)! . . . (αd − βd)!
,

we obtain that xγ Dα
(
ϕ(x)ψ(x)

)
∈ C0(Rd) for all α, γ ∈ Nd

0 , i.e.,
ϕψ ∈ S(Rd).
2. By Theorem 17, we know that ϕ̂, ψ̂ ∈ S(Rd) and hence
ϕ̂ ψ̂ ∈ S(Rd) by the first step. Using Theorem 17, we obtain that
F(ϕ̂ ψ̂) ∈ S(Rd).
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Otherwise we receive by Fubini’s theorem

F(ϕ ∗ ψ)(ω) =

∫
Rd

( ∫
Rd

ϕ(y)ψ(x− y) dy
)

e−i x·ω dx

=

∫
Rd

ϕ(y) e−i y·ω( ∫
Rd

ψ(x− y) e−i (x−y)·ω dx
)

dy

=
( ∫

Rd

ϕ(y) e−i y·ω dy
)
ψ̂(ω) = ϕ̂(ω) ψ̂(ω) .

Therefore ϕ ∗ ψ = F−1(ϕ̂ ψ̂) ∈ S(Rd).
The basic properties of the d-variate Fourier transform on S(Rd)
can be proved similarly as in the univariate case. The following
properties 1, 3, and 4 hold also true for functions in L1(Rd),
whereas property 2 holds only under additional smoothness
assumptions.
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Properties of the Fourier transform on S(Rd)

Theorem 19

The Fourier transform of a function ϕ ∈ S(Rd) has the following
properties:

1. Translation and modulation: For fixed x0,ω0 ∈ Rd ,(
ϕ(x− x0)

)̂
(ω) = e−i x0·ω ϕ̂(ω) ,(

e−iω0·x ϕ(x)
)̂

(ω) = ϕ̂(ω + ω0) .

2. Differentiation and multiplication: For α ∈ Nd
0 ,(

Dαϕ(x)
)̂

(ω) = i|α|ωα ϕ̂(ω) ,(
xαϕ(x)

)̂
(ω) = i|α| (Dαϕ̂)(ω) .
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Theorem 19 (continue)

3. Scaling: For c ∈ R \ {0},

(
ϕ(c x)

)̂
(ω) =

1

|c |d
ϕ̂(c−1ω) .

4. Convolution: For ϕ, ψ ∈ S(Rd),

(ϕ ∗ ψ)̂ (ω) = ϕ̂(ω) ψ̂(ω) .
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Fourier transform on L1(Rd) and L2(Rd)

Similar to the univariate case, we obtain the following theorem for
the Fourier transform on L1(Rd).

Theorem 20

The Fourier transform F defined by (14) is a linear continuous
operator from L1(Rd) into C0(Rd) with the operator norm
‖F‖L1(Rd )→C0(Rd ) = 1.
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Proof: By (12) there exists for any f ∈ L1(Rd) a sequence
(ϕk)k∈N with ϕk ∈ S(Rd) such that limk→∞ ‖f − ϕk‖L1(Rd ) = 0.

Then the C0(Rd) norm of F f −Fϕk can be estimated by

‖F f −Fϕk‖C0(Rd ) = max
ω∈Rd

|F(f − ϕk)(ω)| ≤ ‖f − ϕk‖L1(Rd ) ,

i.e., limk→∞Fϕk = F f in the norm of C0(Rd). By
S(Rd) ⊂ C0(Rd) and the completeness of C0(Rd) we conclude
that F f ∈ C0(Rd). The operator norm of F : L1(Rd)→ C0(Rd)
can be deduced as in the univariate case, where we have just to
use the d-variate Gaussian function.
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Theorem 21 (Fourier inversion formula for L1(Rd) functions)

Let f ∈ L1(Rd) and f̂ ∈ L1(Rd). Then the Fourier inversion
formula

f (x) =
1

(2π)d

∫
Rd

f̂ (ω) eiω·x dω (20)

holds true for almost all x ∈ Rd .

The proof follows similar lines as those of Theorem in the
univariate case. Another proof of Theorem 21 is sketched in
Remark 42.
The following lemma is related to the more general Lemma proved
in the univariate case.
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Lemma 22

For arbitrary ϕ, ψ ∈ S(Rd), the following Parseval equality is
valid:

(2π)d 〈ϕ,ψ〉L2(Rd ) = 〈Fϕ,Fψ〉L2(Rd ) .

In particular, we have (2π)d/2 ‖ϕ‖L2(Rd ) = ‖Fϕ‖L2(Rd ).

Proof: By Theorem 17 we have ϕ = F−1(Fϕ) for ϕ ∈ S(Rd).
Then Fubini’s theorem yields

(2π)d 〈ϕ, ψ〉L2(Rd ) = (2π)d
∫
Rd

ϕ(x)ψ(x) dx

=

∫
Rd

ψ(x)
( ∫

Rd

(Fϕ)(ω) ei x·ω dω
)

dx

=

∫
Rd

(Fϕ)(ω)

∫
Rd

ψ(x) e−i x·ω dx dω

=

∫
Rd

Fϕ(ω)Fψ(ω) dω = 〈Fϕ, Fψ〉L2(Rd ) .
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We will use the following extension theorem of bounded linear
operator, see e.g. [1, Theorem 2.4.1], to extend the Fourier
transform from S(Rd) to L2(Rd).

Theorem 23 (Extension of a bounded linear operator)

Let H be a Hilbert space and let D ⊂ H be a linear subset which is
dense in H. Further let F : D → H be a linear bounded operator.
Then F admits a unique extension to a bounded linear operator
F̃ : H → H with equal operator norms

‖F‖D→H = ‖F̃‖H→H .

For each f ∈ H with f = limk→∞ fk , where fk ∈ D, it holds
F̃ f = limk→∞ Ffk .
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Theorem 24 (Plancherel)

The Fourier transform F : S(Rd)→ S(Rd) can be uniquely
extended to a linear continuous bijective transform
F : L2(Rd)→ L2(Rd), which fulfills the Parseval equality

(2π)d 〈f , g〉L2(Rd ) = 〈F f , Fg〉L2(Rd ) (21)

for all f , g ∈ L2(Rd). In particular, it holds
(2π)d/2 ‖f ‖L2(Rd ) = ‖F f ‖L2(Rd ).
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The above extension is also called Fourier transform on L2(Rd) or
sometimes Fourier–Plancherel transform.
Proof: We consider D = S(Rd) as linear, dense subspace of the
Hilbert space H = L2(Rd). By Lemma 22 we know that F as well
as F−1 are bounded linear operators from D to H with the
operator norms (2π)d/2 and (2π)−d/2. Therefore both operators
admit a unique extensions F : L2(Rd)→ L2(Rd) and
F−1 : L2(Rd)→ L2(Rd) and (21) is fulfilled.
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Fourier transforms of radial functions

A function f : Rd → C is called a radial function, if f (x) = f (y)
for all x, y ∈ Rd with ‖x‖2 = ‖y‖2. Thus a radial function f can
be written in the form f (x) = F (‖x‖2) with certain univariate
function F : [0,∞)→ C. A radial function f is characterized by
the property f (A x) = f (x) for all orthogonal matrices A ∈ Rd×d .
The Gaussian function in Example 15 is a typical example of a
radial function.
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Lemma 25

Let A ∈ Rd×d be invertible and let f ∈ L1(Rd). Then we have

(
f (A x)

)̂
(ω) =

1

|det A|
f̂ (A−>ω) .

In particular, for an orthogonal matrix A ∈ Rd×d we have the
relation (

f (A x)
)̂

(ω) = f̂ (Aω) .

Proof: Substituting y := A x, it follows(
f (A x)

)̂
(ω) =

∫
Rd

f (Ax) e−iω·x dx

=
1

|det A|

∫
Rd

f (y) e−i (A−>ω)·y dy =
1

|det A|
f̂ (A−>ω) .

If A is orthogonal, then A−> = A and |det A| = 1.
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Corollary 26

If f ∈ L1(Rd) is a radial function of the form f (x) = F (r) with
r := ‖x‖2, then its Fourier transform f̂ is a radial function too. In
the case d = 2, we have

f̂ (ω) = 2π

∫ ∞
0

F (r) J0(r ‖ω‖2) r dr , (22)

where J0 denotes the Bessel function of order zero

J0(x) :=
∞∑
k=0

(−1)k

(k!)2

(x
2

)2k
.

61 / 302



Proof: The first assertion is an immediate consequence of Lemma
25. Let d = 2. Using polar coordinates (r , ϕ) and (ρ, ψ) with
r = ‖x‖2, ρ = ‖ω‖2 and ϕ, ψ ∈ [0, 2π) such that

x = (r cosϕ, r sinϕ)> , ω = (ρ cosψ, ρ sinψ)> ,

we obtain

f̂ (ω) =

∫
R2

f (x) e−i x·ω dx

=

∫ ∞
0

∫ 2π

0
F (r) e−i rρ cos(ϕ−ψ) r dϕdr .

The inner integral with respect to ϕ is independent of ψ, since the
integrand is 2π-periodic. For ψ = −π

2 we conclude by Bessel’s
integral formula∫ 2π

0
e−i rρ cos(ϕ+π/2) dϕ =

∫ 2π

0
ei rρ sinϕ dϕ = 2π J0(rρ) .

This yields the integral representation (22) which is called Hankel
transform of order zero of F .
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Remark 27

In the case d = 3, we can use spherical coordinates for the
computation of the Fourier transform of a radial function
f ∈ L1(R3), where f (x) = F (‖x‖2). This results in

f̂ (ω) =
4π

‖ω‖2

∫ ∞
0

F (r) r sin(r ‖ω‖2) dr , ω ∈ R3 \ {0} . (23)

For an arbitrary dimension d ∈ N \ {1}, we obtain for ω ∈ Rd \ {0}

f̂ (ω) = (2π)d/2 ‖ω‖2
1−d/2

∫ ∞
0

F (r) rd/2−1 Jd/2−1(r ‖ω‖2) dr ,

where

Jν(x) :=
∞∑
k=0

(−1)k

k! Γ(k + ν + 1)

(x
2

)2k+ν

denotes the Bessel function of order ν ≥ 0 , see [61, p. 155].
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Example 28

Let f : R2 → R be the characteristic function of the unit disk, i.e.,
f (x) := 1 for ‖x‖2 ≤ 1 and f (x) := 0 for ‖x‖2 > 1. By (22) it
follows for ω ∈ R2 \ {0} that

f̂ (ω) = 2π

∫ 1

0
J0(r ‖ω‖2) r dr =

2π

‖ω‖2
J1(‖ω‖2)

and f̂ (0) = π.
Let f : R3 → R be the characteristic function of the unit ball.
Then from (23) it follows for ω ∈ R3 \ {0} that

f̂ (ω) =
4π

‖ω‖3
2

(
sin ‖ω‖2 − ‖ω‖2 cos ‖ω‖2

)
,

and in particular f̂ (0) = 4π
3 .
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Poisson summation formula

Now we generalize the one-dimensional Poisson summation
formula. For f ∈ L1(Rd) we introduce its 2π–periodization by

f̃ (x) :=
∑
k∈Zd

f (x + 2πk) , x ∈ Rd . (24)

First we prove the existence of the 2π–periodization f̃ ∈ L1(Td) of
f ∈ L1(Rd).

Lemma 29

For given f ∈ L1(Rd), the series in (24) converges absolutely for
almost all x ∈ Rd and f̃ is contained in L1(Td).
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Proof: At first we show that the 2π-periodization ϕ of |f | belongs
to L1(Td), i.e.

ϕ(x) :=
∑
k∈Zd

|f (x + 2π k)| .

For each n ∈ N, we form the nonnegative function

ϕn(x) :=
n−1∑

k1=−n
. . .

n−1∑
kd=−n

|f (x + 2π k)| .

Then we obtain∫
[0, 2π]d

ϕn(x) dx =
n−1∑

k1=−n
. . .

n−1∑
kd=−n

∫
[0, 2π]d

|f (x + 2π k)|dx

=
n−1∑

k1=−n
. . .

n−1∑
kd=−n

∫
2πk+[0, 2π]d

|f (x)| dx

=

∫
[−2πn, 2πn]d

|f (x)| dx
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and hence

lim
n→∞

∫
[0, 2π]d

ϕn(x) dx =

∫
Rd

|f (x)| dx = ‖f ‖L1(Rd ) <∞ . (25)

Since (ϕn)n∈N is a monotone increasing sequence of nonnegative
integrable functions with the property (25), we receive by the
monotone convergence theorem of B. Levi that
limn→∞ ϕ(x) = ϕn(x) for almost all x ∈ Rd and ϕ ∈ L1(Td),
where it holds∫

[0, 2π]d
ϕ(x) dx = lim

n→∞

∫
[0, 2π]d

ϕn(x) dx = ‖f ‖L1(Rd ) .

In other words, the series in (24) converges absolutely for almost
all x ∈ Rd . From

|f̃ (x)| =
∣∣ ∑

k∈Zd

f (x + 2πk)
∣∣ ≤ ∑

k∈Zd

|f (x + 2πk)| = ϕ(x) ,

it follows that f̃ ∈ L1(Td) with

‖f̃ ‖L1(Td ) =

∫
[0, 2π]d

|f̃ (x)|dx ≤
∫

[0, 2π]d
ϕ(x) dx = ‖f ‖L1(R)d .
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The d-dimensional Poisson summation formula describes an
interesting connection between the values f̂ (n), n ∈ Zd , of the
Fourier transform f̂ of a given function f ∈ L1(Rd) ∩ C0(Rd) and
the Fourier series of the 2π-periodization f̃ .
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Theorem 30

Let f ∈ C0(Rd) be a given function which fulfills the decay
conditions

|f (x)| ≤ c

1 + ‖x‖d+ε
2

, |f̂ (ω)| ≤ c

1 + ‖ω‖d+ε
2

(26)

for all x, ω ∈ Rd with some constants ε > 0 and c > 0.
Then for all x ∈ Rd , it holds the Poisson summation formula

(2π)d f̃ (x) = (2π)d
∑
k∈Zd

f (x + 2π k) =
∑
n∈Zd

f̂ (n) ei n·x , (27)

where both series in (27) converge absolutely for all x ∈ Rd . In
particular, for x = 0 it holds

(2π)d
∑
k∈Zd

f (2π k) =
∑
n∈Zd

f̂ (n) .
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Proof: From the decay conditions (26) it follows that f ,
f̂ ∈ L1(Rd) such that f̃ ∈ L1(Td) by Lemma 29. Then we obtain

cn(f̃ ) =
1

(2π)d

∫
[0, 2π]d

f̃ (x) e−i n·x dx

=
1

(2π)d

∫
[0, 2π]d

( ∑
k∈Zd

f (x + 2π k) e−i n·(x+2πk)
)

dx

=
1

(2π)d

∫
Rd

f (x) e−i n·x dx =
1

(2π)d
f̂ (n) .

From the second decay condition and Lemma 8 it follows that∑
n∈Zd |f̂ (n)| <∞. Thus, by Theorem 7, the 2π-periodization

f̃ ∈ C (Td) possesses the uniformly convergent Fourier series

f̃ (x) =
1

(2π)d

∑
n∈Zd

f̂ (n) ei n·x .

Further we have f̃ ∈ C (Td) such that (27) is valid for all x ∈ Rd .
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Remark 31

The decay conditions (26) on f and f̂ are needed only for the
absolute convergence of both series and the pointwise validity of
(27). Note that the Poisson summation formula (27) holds
pointwise or almost everywhere under much weaker conditions on f
and f̂ , see [17].

Finally, we will see that the Fourier transform can be generalized to
so-called tempered distributions which are linear continuous
functionals on the Schwartz space. The simplest tempered
distribution which cannot be described just by integrating the
product of some function with those from S(Rd), is the Dirac
distribution δ defined by 〈δ, ϕ〉 := ϕ(0) for all ϕ ∈ S(Rd).
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A tempered distribution T is a continuous linear functional on
S(Rd). In other words, a tempered distribution T : S(Rd)→ C
fulfills the following conditions:

(i) Linearity: For all α1, α2 ∈ C and all ϕ1, ϕ2 ∈ S(Rd),

〈T , α1 ϕ1 + α2 ϕ2〉 = α1〈T , ϕ1〉+ α2〈T , ϕ2〉 .
(ii) Continuity: If ϕj −→

S
ϕ as j →∞ with ϕj , ϕ ∈ S(Rd), then

lim
j→∞
〈T , ϕj〉 = 〈T , ϕ〉 .

The set of tempered distributions is denoted by S ′(Rd). Defining
for T1, T2 ∈ S ′(Rd) and all ϕ ∈ S(Rd) the operation

〈α1 T1 + α2 T2, ϕ〉 := α1 〈T1, ϕ〉+ α2 〈T2, ϕ〉,
the set S ′(Rd) becomes a linear space. We say that a sequence
(Tk)k∈N of tempered distributions Tk ∈ S ′(Rd) converges in
S ′(Rd) to T ∈ S ′(Rd), if for all ϕ ∈ S(Rd),

lim
k→∞
〈Tk , ϕ〉 = 〈T , ϕ〉 .

We will use the notation Tk −→
S′

T as k →∞.
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Lemma 32 (Schwartz)

A linear functional T : S(Rd)→ C is a tempered distribution if
and only if there exist constants m ∈ N0 and C ≥ 0 such that for
all ϕ ∈ S(Rd),

|〈T , ϕ〉| ≤ C ‖ϕ‖m . (28)

Proof: 1. Assume that (28) holds true. Let ϕj −→
S
ϕ as j →∞,

i.e., by Lemma 10, limj→∞ ‖ϕj − ϕ‖m = 0 for all m ∈ N0. From
(28) it follows

|〈T , ϕj − ϕ〉| ≤ C ‖ϕj − ϕ‖m
for some m ∈ N0 and C ≥ 0. Thus limj→∞〈T , ϕj − ϕ〉 = 0 and
hence limj→∞〈T , ϕj〉 = 〈T , ϕ〉.
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2. Conversely, let T ∈ S ′(Rd). Then ϕj −→
S
ϕ as j →∞ implies

limj→∞〈T , ϕj〉 = 〈T , ϕ〉.
Assume that for all m ∈ N and C > 0 there exists ϕm,C ∈ S(Rd)
such that

|〈T , ϕm,C 〉| > C ‖ϕm,C‖m.

Choose C = m and set ϕm := ϕm,m. Then it follows
|〈T , ϕm〉| > m‖ϕm‖m and hence

1 = |〈T , ϕm

〈T , ϕm〉
〉| > m ‖ ϕm

〈T , ϕm〉
‖m .

We introduce the function

ψm :=
ϕm

〈T , ϕm〉
∈ S(Rd)

which has the properties 〈T , ψm〉 = 1 and ‖ψm‖m < 1
m . Thus,

ψm −→
S

0 as m→∞. On the other hand, we have by assumption

T ∈ S ′(Rd) that limm→∞〈T , ψm〉 = 0. This contradicts
〈T , ψm〉 = 1.
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A measurable function f : Rd → C is called slowly increasing, if
there exist C > 0 and N ∈ N0 such that for all x ∈ Rd ,

|f (x)| ≤ C (1 + ‖x‖2)N . (29)

These functions grow at most polynomial as ‖x‖2 →∞. In
particular, polynomials and complex exponential functions eiω·x are
slowly increasing functions. But the reciprocal Gaussian function
f (x) := e‖x‖

2
2 is not a slowly increasing function.

For each slowly increasing function f , we can form the linear
functional Tf : S(Rd)→ C,

〈Tf , ϕ〉 :=

∫
Rd

f (x)ϕ(x) dx , ϕ ∈ S(Rd) . (30)
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By Lemma 32 we obtain Tf ∈ S ′(Rd), because for every
ϕ ∈ S(Rd),

|〈Tf , ϕ〉| ≤
∫
Rd

|f (x)|
(1 + ‖x‖2)N+d+1

(1 + ‖x‖2)N+d+1 |ϕ(x)|dx

≤ C

∫
Rd

dx

(1 + ‖x‖2)d+1
sup

x∈Rd

(
(1 + ‖x‖2)N+d+1 |ϕ(x)|

)
≤ C

∫
Rd

dx

(1 + ‖x‖2)d+1
‖ϕ‖N+d+1 .

In the following, we identify a slowly increasing function f and the
corresponding functional Tf ∈ S ′(Rd). Then Tf is called a regular
tempered distribution. In this case we also say that f ∈ S ′(Rd). A
tempered distribution, which is not a regular tempered distribution,
is called a singular tempered distribution. The constant function 1
and any polynomial are in S ′(Rd), but the function e‖x‖

2
2 is not in

S ′(Rd).
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Example 33

Every function f ∈ Lp(Rd), 1 ≤ p ≤ ∞, is in S ′(Rd) by Lemma
32. For p = 1 we have

|〈Tf , ϕ〉| ≤
∫
Rd

|f (x)||ϕ(x)| dx ≤ ‖f ‖L1(Rd )‖ϕ‖0 <∞ .

For 1 < p ≤ ∞, let q be given by 1
p + 1

q = 1, where q = 1 if
p =∞. Then we obtain for m ∈ N0 with mq ≥ d + 1 by Hölder’s
inequality

|〈Tf , ϕ〉| ≤
∫
Rd

|f (x)|(1 + ‖x‖2)−m(1 + ‖x‖2)m |ϕ(x)| dx

≤ ‖ϕ‖m
∫
Rd

|f (x)|(1 + ‖x‖2)−m dx

≤ ‖ϕ‖m ‖f ‖Lp(Rd )

( ∫
Rd

(1 + ‖x‖2)−qm dx
)1/q

.
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Example 34

The Dirac distribution δ is defined by

〈δ, ϕ〉 := ϕ(0)

for all ϕ ∈ S(Rd). Clearly, the Dirac distribution δ is a continuous
linear functional with |〈δ, ϕ〉| ≤ ‖ϕ‖0 for all ϕ ∈ S(Rd) so that
δ ∈ S ′(Rd). By the following argument the Dirac distribution is a
singular tempered distribution: Assume that δ is a regular
tempered distribution. Then there exists a slowly increasing
function f with

ϕ(0) =

∫
Rd

f (x)ϕ(x) dx

for all ϕ ∈ S(Rd). By (29) this function f is integrable over the
unit ball. Let ϕ be the compactly supported test function (13) and
ϕn(x) := ϕ(n x) for n ∈ N.
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Example 34 (continue)

Then we obtain the contradiction

e−1 = |ϕn(0)| =
∣∣ ∫

Rd

f (x)ϕn(x) dx
∣∣ ≤ ∫

B1/n(0)
|f (x)| |ϕ(nx)|dx

≤ e−1

∫
B1/n(0)

|f (x)|dx→ 0 as n→∞ ,

where B1/n(0) = {x ∈ Rd : ‖x‖2 ≤ 1/n}.

Important operations on tempered distributions are translations,
dilations, multiplications with smooth, sufficiently fast decaying
functions and derivations. In the following, we consider these
operations.
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The translation by x0 ∈ Rd of a tempered distribution T ∈ S ′(Rd)
is the tempered distribution T (· − x0) defined for all ϕ ∈ S(Rd) by

〈T (· − x0), ϕ〉 := 〈T , ϕ(·+ x0)〉 .

The scaling with c ∈ R \ {0} of T ∈ S ′(Rd) is the tempered
distribution T (c ·) given for all ϕ ∈ S(Rd) by

〈T (c ·), ϕ〉 :=
1

|c |d
〈T , ϕ(c−1 ·)〉 .

In particular for c = −1, we obtain the reflection of T ∈ S ′(Rd),
namely

〈T (− ·), ϕ〉 := 〈T , ϕ̃〉

for all ϕ ∈ S(Rd), where ϕ̃(x) := ϕ(−x) denotes the reflection of
ϕ ∈ S(Rd).
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Assume that ψ ∈ C∞(Rd) fulfills

|Dαψ(x)| ≤ Cα (1 + ‖x‖2)Nα

for all α ∈ Nd
0 and positive constants Cα and Nα, i.e., Dαψ has at

most polynomial growth at infinity for all α ∈ Nd
0 . Then the

product of ψ with a tempered distribution T ∈ S ′(Rd) with is the
tempered distribution ψT defined as

〈ψT , ϕ〉 := 〈T , ψ ϕ〉 , ϕ ∈ S(Rd) .

Note that the product of an arbitrary C∞(Rd) function with a
tempered distribution is not defined.

81 / 302



Example 35

For a regular distribution Tf ∈ S ′(Rd) with a slowly increasing
function f , we obtain

Tf (· − x0) = Tf (·−x0) , Tf (ε·) = Tf (ε·) , ψTf = Tψf .

For the Dirac distribution δ, we have

〈δ(· − x0), ϕ〉 = 〈δ, ϕ(·+ x0)〉 = ϕ(x0) ,

〈δ(ε·), ϕ〉 =
1

|ε|d
〈δ, ϕ

( ·
ε

)
〉 =

1

|ε|d
ϕ(0) ,

〈ψ δ, ϕ〉 = 〈δ, ψ ϕ〉 = ψ(0)ϕ(0)

for all ϕ ∈ S(Rd).
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Another important operation on tempered distributions is the
differentiation. For α ∈ Nd

0 , the derivative Dα T of a distribution
T ∈ S ′(Rd) is defined for all ϕ ∈ S(Rd) by

〈Dα T , ϕ〉 := (−1)|α| 〈T , Dαϕ〉 . (31)

Assume that f ∈ C r (Rd) with r ∈ N possesses slowly increasing
partial derivatives Dαf for all |α| ≤ r . Thus TDαf ∈ S ′(Rd).
Then we see by integration by parts that TDαf = DαTf for all
α ∈ Nd

0 with |α| ≤ r , i.e., the distributional derivatives and the
classical derivatives coincide.
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Lemma 36

Let T , Tk ∈ S ′(Rd) with k ∈ N be given. For λ1, λ2 ∈ R and α,
β ∈ Nd

0 , the following relations hold true:

1 Dα T ∈ S ′(Rd) ,

2 Dα (λ1 T1 + λ2 T2) = λ1 D
α T1 + λ2 D

α T2 ,

3 Dα (Dβ T ) = Dβ (Dα T ) = Dα+β T .

4 Tk −→
S′

T as k →∞ implies Dα Tk −→
S′

Dα T as k →∞ .

Proof: The properties 1 – 3 follow directly from the definition of
the derivative of tempered distributions. Property 4 can be derived
by

lim
k→∞
〈Dα Tk , ϕ〉 = lim

k→∞
(−1)|α| 〈Tk , D

α ϕ〉 = (−1)|α| 〈T , Dα ϕ〉

= 〈Dα T , ϕ〉

for all ϕ ∈ S(Rd).
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Example 37

For the slowly increasing univariate function

f (x) :=

{
0 x ≤ 0 ,
x x > 0 ,

we obtain

〈D Tf , ϕ〉 = −〈f , ϕ′〉 = −
∫
R
f (x)ϕ′(x) dx

= −
∫ ∞

0
x ϕ′(x) dx = −x ϕ(x)

∣∣∞
0

+

∫ ∞
0

ϕ(x) dx

=

∫ ∞
0

ϕ(x) dx

so that

D Tf (x) = H(x) :=

{
0 x ≤ 0 ,
1 x > 0 .
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Example 37 (continue)

The function H is called Heaviside function. Further we get

〈D2 Tf , ϕ〉 = −〈D Tf , ϕ
′〉 = −

∫ ∞
0

ϕ′(x) dx

= −ϕ(x)
∣∣∞
0

= ϕ(0) = 〈δ, ϕ〉

so that D2 Tf = D TH = δ. Thus the distributional derivative of
the Heaviside function is equal to the Dirac distribution.

For arbitrary ψ ∈ S(Rd) and T ∈ S ′(Rd), the convolution ψ ∗ T is
defined as

〈ψ ∗ T , ϕ〉 := 〈T , ψ̃ ∗ ϕ〉 , ϕ ∈ S(Rd) , (32)

where ψ̃ denotes the reflection of ψ.
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Example 38

Let f be a slowly increasing function. For the regular tempered
distribution Tf ∈ S ′(Rd) and ψ ∈ S(Rd) we have by Fubini’s
theorem for all ϕ ∈ S(Rd),

〈ψ ∗ Tf , ϕ〉 = 〈Tf , ψ̃ ∗ ϕ〉 =

∫
Rd

f (y) (ψ̃ ∗ ϕ)(y) dy

=

∫
Rd

f (y)
( ∫

Rd

ψ(x− y)ϕ(x) dx
)

dy =

∫
Rd

(ψ ∗ f )(x)ϕ(x) dx ,

i.e., ψ ∗ Tf = Tψ∗f is a regular tempered distribution generated by
the C∞(Rd) function∫

Rd

ψ(x− y) f (y) dy = 〈Tf , ψ(x− ·)〉 .
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Example 38 (continue)

For the Dirac distribution δ and ψ ∈ S(Rd), we get for all
ϕ ∈ S(Rd)

〈ψ ∗ δ, ϕ〉 = 〈δ, ψ̃ ∗ ϕ〉 = (ψ̃ ∗ ϕ)(0) =

∫
Rd

ψ(x)ϕ(x) dx

i.e., ψ ∗ δ = ψ.
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The convolution ψ ∗ T of ψ ∈ S(Rd) and T ∈ S ′(Rd) possesses
the following properties:

Theorem 39

For all ψ ∈ S(Rd) and T ∈ S ′(Rd), the convolution ψ ∗ T is a
regular tempered distribution generated by the slowly increasing
C∞(Rd) function 〈T , ψ(x− ·)〉, x ∈ Rd . For all α ∈ Nd

0 it holds

Dα(ψ ∗ T ) = (Dαψ) ∗ T = ψ ∗ (DαT ) . (33)
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Proof: 1. For arbitrary ϕ ∈ S(Rd), T ∈ S ′(Rd), and α ∈ Nd
0 , we

obtain by (31) and (32)

〈Dα(ψ ∗T ), ϕ〉 = (−1)|α| 〈ψ ∗T , Dαϕ〉 = (−1)|α| 〈T , ψ̃ ∗Dαϕ〉 ,

where ψ̃(x) = ψ(−x) and

(ψ̃ ∗ Dαϕ)(x) =

∫
Rd

ψ̃(y)Dαϕ(x− y) dy .

Now we have

(ψ̃ ∗ Dαϕ)(x) =

∫
Rd

ψ̃(y)Dαϕ(x− y) dy = Dα (ψ̃ ∗ ϕ)(x)

= Dα
∫
Rd

ψ̃(x− y)ϕ(y) dy =

∫
Rd

Dα ψ̃(x− y)ϕ(y) dy

= (Dα ψ̃ ∗ ϕ)(x) ,

since the interchange of differentiation and integration in above
integrals is justified, because ψ̃ and ϕ belong to S(Rd).
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From
Dα ψ̃ = (−1)|α| D̃α ψ

it follows that

〈Dα(ψ ∗ T ), ϕ〉 = (−1)|α| 〈ψ ∗ T , Dαϕ〉 = 〈Dα T , ψ̃ ∗ ϕ〉
= 〈ψ ∗ Dα T , ϕ〉

= (−1)|α| 〈T , Dαψ̃ ∗ ϕ〉 = 〈T , D̃αψ ∗ ϕ〉 = 〈(Dαψ) ∗ T , ϕ〉 .

Thus we have shown (33).
2. Now we prove that the convolution ψ ∗ T is a regular tempered
distribution generated by the complex-valued function
〈T , ψ(x− ·)〉 for x ∈ Rd . In Example 38 we have seen that this is
true for each regular tempered distribution.
Let ψ, ϕ ∈ S(Rd) and T ∈ S ′(Rd) be given. By Lemma 18 we
know that ψ̃ ∗ ϕ ∈ S(Rd).
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We represent (ψ̃ ∗ ϕ)(y) for arbitrary y ∈ Rd a limit of Riemann
sums

(ψ̃ ∗ ϕ)(y) =

∫
Rd

ψ(x− y)ϕ(x) dx = lim
j→∞

∑
k∈Zd

ψ(xk − y)ψ(xk)
1

jd
,

where xk := k
j , k ∈ Zd , is the midpoint of a hypercube with side

length 1
j . Indeed, since ψ̃ ∗ ϕ ∈ S(Rd), it is not hard to check that

the above Riemann sums converge in S(Rd). Since T is a
continuous linear functional, we get

〈T , ψ̃ ∗ ϕ〉 = lim
j→∞
〈T ,

∑
k∈Zd

ϕ(xk − ·)ψ(xk)
1

jd
〉

= lim
j→∞

∑
k∈Zd

ϕ(xk)
1

jd
〈T , ψ(xk − ·)〉

=

∫
Rd

〈T , ψ(x− ·)〉ϕ(x) dx ,

i.e., the convolution ψ ∗ T is a regular tempered distribution
generated by the function 〈T , ψ(x− ·)〉 which belongs to C∞(Rd)
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3. Finally, we show that the C∞(Rd) function 〈T , ψ(x− ·)〉 is
slowly increasing. Here we use the simple estimate

1 + ‖x− y‖2 ≤ 1 + ‖x‖2 + ‖y‖2 ≤ (1 + ‖x‖2) (1 + ‖y‖2)

for all x, y ∈ Rd .
For arbitrary fixed x0 ∈ Rd and every m ∈ N0, we obtain for
ψ ∈ S(Rd),

‖ψ(x0 − ·)‖m = max
|β|≤m

‖(1 + ‖x‖2)m Dβψ(x0 − x)‖C0(Rd )

= max
|β|≤m

max
x∈Rd

(1 + ‖x‖2)m |Dβ ψ(x0 − x)|

= max
|β|≤m

max
y∈Rd

(1 + ‖x0 − y‖2)m |Dβψ(y)|

≤ (1 + ‖x0‖2)m sup
|β|≤m

sup
y∈Rd

(1 + ‖y‖2)m |Dβ ψ(y)|

= (1 + ‖x0‖2)m ‖ψ‖m .
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Since T ∈ S ′(Rd), by Lemma 32 of Schwartz there exist constants
m ∈ N0 and C > 0, so that |〈T , ϕ〉| ≤ C ‖ϕ‖m for all ϕ ∈ S(Rd).
Then we conclude

|〈T , ψ(x− ·)〉| ≤ C ‖ψ(x− ·)‖m ≤ C (1 + ‖x‖2)m ‖ψ‖m .

Hence 〈T , ψ(x− ·)〉 is a slowly increasing function.
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The Fourier transform FT = T̂ of a tempered distribution
T ∈ S ′(Rd) is defined by

〈FT , ϕ〉 = 〈T̂ , ϕ〉 := 〈T ,Fϕ〉 = 〈T , ϕ̂〉 (34)

for all ϕ ∈ S(Rd). Indeed T̂ is again a continuous linear functional
on S(Rd), since by Theorem 17, the expression 〈T ,Fϕ〉 defines a
linear functional on S(Rd). Further, ϕk −→

S
ϕ as k →∞, implies

F ϕk −→
S
F ϕ as k →∞ so that for T ∈ S ′(Rd), it follows

lim
k→∞
〈T̂ , ϕk〉 = lim

k→∞
〈T , F ϕk〉 = 〈T , F ϕ〉 = 〈T̂ , ϕ〉 .
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Example 40

Let f ∈ L1(Rd). Then we obtain for an arbitrary ϕ ∈ S(Rd) by
Fubini’s theorem

〈FTf , ϕ〉 = 〈Tf , ϕ̂〉 =

∫
Rd

( ∫
Rd

ϕ(x) e−i x·ω dx
)
f (ω) dω

=

∫
Rd

f̂ (x)ϕ(x) dx = 〈Tf̂ , ϕ〉 ,

i.e., F Tf = TF f .
Let x0 ∈ Rd be fixed. For the shifted Dirac distribution
δx0 := δ(· − x0), we have

〈Fδx0 , ϕ〉 = 〈δx0 , ϕ̂〉 = 〈δx0 ,

∫
Rd

ϕ(ω)e−iω·x dω〉

=

∫
Rd

ϕ(ω) e−iω·x0 dω = 〈e−iω·x0 , ϕ(ω)〉 ,

so that Fδx0 = e−iω·x0 and in particular, for x0 = 0 we obtain
Fδ = 1.
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Theorem 41

The Fourier transform on S ′(Rd) is a linear, bijective operator
F : S ′(Rd)→ S ′(Rd). The Fourier transform on S ′(Rd) is
continuous in the sense that for Tk , T ∈ S ′(Rd) the convergence
Tk −→

S′
T as k →∞ implies F Tk −→

S′
F T as k →∞. The inverse

Fourier transform is given by

〈F−1T , ϕ〉 = 〈T , F−1ϕ〉 (35)

for all ϕ ∈ S(Rd) which means

F−1T :=
1

(2π)d
F T (− ·) .

For all T ∈ S ′(Rd) it holds the Fourier inversion formula

F−1(F T ) = F (F−1T ) = T .
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Proof: By definition (34), the Fourier transform F maps S ′(Rd)
into itself. Obviously, F is a linear operator. We show that F is a
continuous linear operator of S ′(Rd) onto S ′(Rd). Assume that
Tk −→

S′
T as k →∞. Then, we get by (34),

lim
k→∞
〈F Tk , ϕ〉 = lim

k→∞
〈Tk , F ϕ〉 = 〈T , F ϕ〉 = 〈F T , ϕ〉

for all ϕ ∈ S(Rd). This means that F Tk −→
S′
F T as k →∞, i.e.,

the operator F : S ′(Rd)→ S ′(Rd) is continuous.
Next we show that (35) is the inverse Fourier transform, i.e.,

F−1 (F T ) = T , F (F−1 T ) = T (36)

for all T ∈ S ′(Rd).
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By Theorem 17, we find that for all ϕ ∈ S(Rd),

〈F−1 (F T ), ϕ〉 =
1

(2π)d
〈F
(
F T (− ·)

)
, ϕ〉

=
1

(2π)d
〈F T (− ·), F ϕ〉 =

1

(2π)d
〈F T , (F ϕ)(− ·)〉

= 〈F T , F−1 ϕ〉 = 〈T , F(F−1 ϕ)〉 = 〈T , ϕ〉 .

By (36), each T ∈ S ′(Rd) is the Fourier transform of the
tempered distribution S = F−1 T , i.e., T = F S . Thus both F
and F−1 map S ′(Rd) one-to-one onto S ′(Rd).
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Remark 42

From Theorem 41 it follows immediately Theorem 21. If
f ∈ L1(Rd) with f̂ ∈ L1(Rd) is given, then Tf and Tf̂ are regular
tempered distributions by Example 33. By Theorem 41 and
Example 40 we have

TF−1 f̂ = F−1 Tf̂ = F−1(FTf ) = Tf

so that the functions f and

(F−1f̂ )(x) =
1

(2π)d

∫
Rd

f̂ (ω) ei x·ω dω

are equal almost everywhere.
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The following theorem summarizes properties of Fourier transform
on S ′(Rd).

Theorem 43 (Properties of the Fourier transform on S ′(Rd))

The Fourier transform of a tempered distribution T ∈ S ′(Rd) has
the following properties:

1. Translation and modulation: For fixed x0, ω0 ∈ Rd ,

FT (· − x0) = e−iω·x0 FT ,

F
(
e−iω0·x T

)
= FT (·+ ω0) .

2. Differentiation and multiplication: For α ∈ Nd
0 ,

F(DαT ) = i|α|ωαFT ,

F(xαT ) = i|α|DαFT .
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Theorem 43 (continue)

3. Scaling: For c ∈ R \ {0},

FT (c ·) =
1

|c |d
FT (c−1 ·) .

4. Convolution: For ϕ ∈ S(Rd),

F(T ∗ ϕ) = (FT ) (Fϕ) .

The proof follows in a straightforward way from the definitions of
corresponding operators, in particular the Fourier transform (34)
on S ′(Rd) and Theorem 19.
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Finally, we present some additional examples of Fourier transforms
of tempered distributions.

Example 44

In Example 40 we have seen that for fixed x0 ∈ Rd ,

F δx0 = e−iω·x0 , F δ = 1 .

Now we determine F−1 1. By Theorem 41, we obtain

F−1 1 =
1

(2π)d
F 1(− ·) =

1

(2π)d
F 1,

since the reflection 1(− ·) is equal to 1. Thus, we have
F 1 = (2π)d δ. From Theorem 43, it follows for any α ∈ Nd

0 ,

F (Dα δ) = (iω)αF δ = (iω)α 1 = (iω)α ,

F (xα) = F (xα 1) = i|α|DαF 1 = (2π)d i|α|Dα δ .
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The spaces S(Rd), L2(Rd) and S ′(Rd) are a typical example of a
so-called Gelfand triple named after the mathematician
I.M. Gelfand (1913 – 2009). To obtain a Gelfand triple (B, H, B ′),
we equip a Hilbert space H with a dense topological vector
subspace B of test functions carrying a finer topology than H such
that the natural inclusion B ⊂ H is continuous. We consider the
inclusion of the dual space H ′ in B ′, where B ′ is the dual space of
all linear continuous functionals on B with its topology. Applying
the Riesz representation theorem, we can identify H with H ′

leading to the Gelfand triple

B ⊂ H ∼= H ′ ⊂ B ′.
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We are interested in

S(Rd) ⊂ L2(Rd) ∼= L2(Rd)′ ⊂ S ′(Rd). (37)

We already know that S(Rd) is dense in L2(Rd). Moreover, the
first natural embedding is continuous, since ϕk −→

S
ϕ as k →∞

implies

‖ϕk − ϕ‖2
L2(Rd ) =

∫
Rd

(1 + ‖x‖2)−d−1 (1 + ‖x‖2)d+1 |ϕk(x)− ϕ(x)|2 dx

≤ sup
x∈Rd

(1 + ‖x‖2)d+1|ϕk(x)− ϕ(x)|2
∫
Rd

dy

(1 + ‖y‖2)d+1

≤ C sup
x∈Rd

(1 + ‖x‖2)d+1 |ϕk(x)− ϕ(x)|2 → 0

as k →∞.

105 / 302



Let F be a continuous linear functional on L2(Rd). Then we can
identify F with the unique function f ∈ L2(Rd) fulfilling
F = 〈·, f̄ 〉L2(Rd ) and consider the mapping ι : L2(Rd)′ → S ′(Rd)
defined by ιF := Tf , see Example 33. Indeed ι is injective by the
following argument: Assume that Fn = 〈·, f̄n〉L2(Rd ), n = 1, 2, are

different continuous linear functionals on L2(Rd), but Tf1 = Tf2 .
Then we get 〈Tf1 , ϕ〉 = 〈Tf2 , ϕ〉 for all ϕ ∈ S(Rd), i.e.,

〈ϕ, f̄1〉L2(Rd ) = 〈ϕ, f̄2〉L2(Rd )

which is impossible, since S(Rd) is dense in L2(Rd).
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Corollary 45

If we identify f ∈ L2(Rd) with Tf ∈ S ′(Rd), then the Fourier
transforms on L2(Rd) and S ′(Rd) coincide in the sense
FTf = TF f .

Proof: For any sequence (fk)k∈N of functions fk ∈ S(Rd)
converging to f in L2(Rd), we obtain

lim
k→∞
〈Fϕ, f̄k〉L2(Rd ) = 〈Fϕ, f̄ 〉L2(Rd ) = 〈Tf , Fϕ〉 = 〈FTf , ϕ〉

for all ϕ ∈ S(Rd). On the other hand, we conclude by continuity
of F that

lim
k→∞
〈Fϕ, f̄k〉L2(Rd ) = lim

k→∞
〈ϕ,F fk〉L2(Rd ) = 〈ϕ,F f 〉L2(Rd ) = 〈TF f , ϕ〉

for all ϕ ∈ S(Rd). Thus, FTf = TF f and we are done.
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Multidimensional discrete Fourier transforms

The multidimensional DFT is necessary for the computation of
Fourier coefficients of a function f ∈ C (Td) as well as for the
calculation of the Fourier transform of a function
f ∈ L1(Rd) ∩ C (Rd). Further the two-dimensional DFT finds
numerous applications in image processing. The properties of the
one-dimensional DFT can be extended to the multidimensional
DFT in a straightforward way.
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Computation of multivariate Fourier coefficients

We describe the computation of Fourier coefficients ck(f ),
k = (kj)

d
j=1 ∈ Zd , of a given function f ∈ C (Td), where f is

sampled on the uniform grid {2π
N n : n ∈ I dN}, where N ∈ N is even,

IN := {0, . . . ,N − 1}, and
I dN := {n = (nj)

d
j=1 : nj ∈ IN , j = 1, . . . , d}. Using the rectangle

rule of numerical integration, we can compute ck(f ) for k ∈ Zd

approximately. Since [0, 2π]d is equal to the union of the Nd

hypercubes 2π
N n + [0, 2π

N ]d , n ∈ I dN , we obtain

ck(f ) =
1

(2π)d

∫
[0, 2π]d

f (x) e−i k·x dx ≈ 1

Nd

∑
n∈I dN

f
(2π

N
n
)

e−2πi (k·n)/N

=
1

Nd

∑
n∈I dN

f
(2π

N
n
)
wk·n
N

with wN = e−2πi/N .
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The expression ∑
n∈I dN

f
(2π

N
n
)
wk·n
N

is called the d-dimensional discrete Fourier transform of size
N1 × . . .× Nd of the d-dimensional array

(
f ( 2π

N n)
)

n∈I dN
, where

N1 = . . . = Nd := N. Thus we obtain the approximate Fourier
coefficients

f̂k :=
1

Nd

∑
n∈I dN

f
(2π

N
n
)
wk·n
N . (38)

Obviously, the values f̂k are N-periodic, i.e., for all k, m ∈ Zd we
have

f̂k+N m = f̂k .

110 / 302



But by Lemma 6 we know that lim‖k‖2→∞ ck(f ) = 0. Therefore we
can only expect that

f̂k ≈ ck(f ) , kj = −N

2
, . . . ,

N

2
− 1 ; j = 1, . . . , d .

To see this effect more clearly, we will derive a multidimensional
aliasing formula. By δm, m ∈ Zd , we denote the d-dimensional
Kronecker symbol

δm :=

{
1 m = 0 ,
0 m ∈ Zd \ {0} .
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Lemma 46

Let Nj ∈ N \ {1}, j = 1, . . . , d , be given. Then for each
m = (mj)

d
j=1 ∈ Zd , we have

N1−1∑
k1=0

. . .

Nd−1∑
kd=0

wm1k1
N1

. . .wmdkd
Nd

=
d∏

j=1

(Nj δmj mod N)

=

{ ∏d
j=1 Nj m ∈ N1 Z× . . .× Nd Z ,

0 m ∈ Zd \ (N1 Z× . . .× Nd Z) .

If N1 = . . . = Nd = N, then for each m ∈ Zd ,∑
k∈I dN

wm·k
N = Nd δm mod N =

{
Nd m ∈ N Zd ,
0 m ∈ Zd \ (N Zd) ,

where the vector m mod N := (mj mod N)dj=1 denotes the

nonnegative residue of m ∈ Zd modulo N, and
δm mod N =

∏d
j=1 δmj mod N .
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Proof: This result is an immediate consequence

N1−1∑
k1=0

. . .

Nd−1∑
kd=0

wm1k1
N1

. . .wmdkd
Nd

=
d∏

j=1

( Nj−1∑
kj=0

w
mjkj
Nj

)

=
d∏

j=1

(Nj δmj mod Nj
) .

The following aliasing formula describes a close relation between
the Fourier coefficients ck(f ) and the approximate values f̂k.
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Theorem 47

Let N ∈ N be even and let f ∈ C (Td) be given. Assume that the
Fourier coefficients ck(f ) satisfy the condition

∑
k∈Zd

|ck(f )| <∞.

Then we have the aliasing formula

f̂k =
∑

m∈Zd

ck+N m(f ) . (39)

Thus for kj = −N
2 , . . . ,

N
2 − 1 and j = 1, . . . , d , we have the error

estimate
|f̂k − ck(f )| ≤

∑
m∈Zd\{0}

|ck+N m(f )| .
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Proof: By Theorem 7, the d-dimensional Fourier series of f
converges uniformly to f . Hence for all x ∈ Td , we have

f (x) =
∑

m∈Zd

cm(f ) eim·x .

In particular for x = 2π
N n, n ∈ I dN , we obtain

f
(2π

N
n
)

=
∑

m∈Zd

cm(f ) e2π i (m·n)/N =
∑

m∈Zd

cm(f )w−m·n
N .

Hence due to (38) and the pointwise convergence of the Fourier
series,

f̂k =
1

Nd

∑
n∈IN

( ∑
m∈Zd

cm(f )w−m·n
N

)
wk·n
N

=
1

Nd

∑
m∈Zd

cm(f )
∑
n∈I dN

w
(k−m)·n
N ,

which yields the aliasing formula (39) by Lemma 46.
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Now we sketch the computation of the Fourier transform f̂ of a
given function f ∈ L1(Rd) ∩ C0(Rd). Since f (x)→ 0 as
‖x‖2 →∞, we obtain for sufficiently large n ∈ N that

f̂ (ω) =

∫
Rd

f (x) e−i x·ω dx ≈
∫

[−nπ, nπ]d
f (x) e−i x·ω dx , ω ∈ Rd .

Using the uniform grid
{2π

N k : kj = −nN
2 , . . . ,

nN
2 − 1; j = 1, . . . , d} of the hypercube

[−nπ, nπ)d for even N ∈ N, we receive by the rectangle rule of
numerical integration∫

[−nπ, nπ]d
f (x) e−i x·ω dx

≈
(2π

N

)d nN/2−1∑
k1=−nN/2

. . .

nN/2−1∑
kd=−nN/2

f
(2π

N
k
)

e−2πi (k·ω)/N .
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For ω = 1
n m with mj = −nN

2 , . . . ,
nN
2 − 1 and j = 1, . . . , d , we

obtain the following values

(2π

N

)d nN/2−1∑
k1=−nN/2

. . .

nN/2−1∑
kd=−nN/2

f
(2π

N
k
)
wk·ω
nN ≈ f̂

(1

n
m
)
,

which can be considered as d-dimensional DFT(N1 × . . .× Nd)
with N1 = . . . = Nd = n N.
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Two-dimensional discrete Fourier transforms

Let N1, N2 ∈ N \ {1} be given, and let INj
:= {0, . . . ,Nj − 1} for

j = 1, 2 be the corresponding index sets. The linear map from
CN1×N2 into itself which maps any matrix
A = (ak1,k2)N1−1,N2−1

k1,k2=0 ∈ CN1×N2 to the matrix

Â = (ân1,n2)N1−1,N2−1
n1,n2=0 := FN1 A FN2 ,

is called two-dimensional discrete Fourier transform of size N1 ×N2

and abbreviated by DFT(N1 × N2). The entries of the transformed
matrix Â read as follows

ân1,n2 =

N1−1∑
k1=0

N2−1∑
k2=0

ak1,k2 w
k1n1
N1

wk2n2
N2

, nj ∈ INj
; j = 1, 2 . (40)

If we form the entries (40) for all n1, n2 ∈ Z, then we observe the
periodicity of DFT(N1 × N2), i.e., for all `1, `2 ∈ Z, one has

ân1,n2 = ân1+`1 N1,n2+`2 N2 , nj ∈ INj
, j = 1, 2 .
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Remark 48

The two-dimensional DFT is of great importance for digital image
processing. The light intensity measured by a camera is generally
sampled over a rectangular array of pictures elements, so-called
pixels. Thus a digital grayscale image is a matrix
A = (ak1,k2)N1−1,N2−1

k1,k2=0 of N1 N2 pixels (k1, k2) ∈ IN1 × IN2 and
corresponding grayscale values ak1,k2 ∈ {0, 1, . . . , 255}, where
zero means black and 255 is white. Typically, N1, N2 ∈ N are
relatively large, for instance N1 = N2 = 512.
The modulus of the transformed matrix Â is given by
|Â| := (|ân1,n2 |)

N1−1,N2−1
n1,n2=0 and its phase by

atan2 (Im Â,Re Â) :=
(
atan2 (Im ân1,n2 ,Re ân1,n2)

)N1−1,N2−1

n1,n2=0
,

where atan2 is defined in Matlab. In natural images the phase
contains important structure information as illustrated in Figure 1.
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Figure 1: Top: Images Barbara (left) and Lena (right). Bottom: Images
reconstructed with modulus of Barbara and phase of Lena (left) and
conversely, with modulus of Lena and phase of Barbara (right). The
phase appears to be dominant with respect to structures.
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For the computation of DFT(N1 × N2) the following simple
relation to one-dimensional DFT’s is very useful. If the data ak1,k2

can be factorized as

ak1,k2 = bk1 ck2 , kj ∈ INj
; j = 1, 2 ,

then the DFT(N1 × N2) of A = (ak1,k2)N1−1,N2−1
k1,k2=0 = b c> reads as

follows
Â = FN1bc>F>N2

= (b̂n1 ĉn2)N1−1,N2−1
n1,n2=0 , (41)

where (b̂n1)N1−1
n1=0 is the one-dimensional DFT(N1) of b = (bk1)N1−1

k1=0

and (ĉn2)N2−1
n2=0 is the one-dimensional DFT(N2) of c = (ck2)N−1

k2=0.
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Example 49

For fixed sj ∈ INj
, j = 1, 2, the sparse matrix

A :=
(
δ(k1−s1) mod N1

δ(k2−s2) mod N2

)N1−1,N2−1

k1,k2=0

is transformed to Â =
(
wn1s1
N1

wn2s2
N2

)N1−1,N2−1

n1,n2=0
. Thus we see that a

sparse matrix (i.e., a matrix with few nonzero entries) is not
transformed to a sparse matrix.

Conversely, the matrix B =
(
w−s1k1
N1

w−s2k2
N2

)N1−1,N2−1

k1,k2=0
is mapped to

B̂ := N1 N2

(
δ(n1−s1) mod N1

δ(n2−s2) mod N2

)N1−1,N2−1

n1,n2=0
.
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Example 50

Let N1 = N2 = N ∈ N \ {1}. We consider the matrix

A =
(
ak1 ak2

)N−1

k1,k2=0
, where akj is defined by

akj :=

{
1
2 kj = 0 ,

kj
N kj = 1, . . . ,N − 1 .

Thus by (41) we obtain the entries of the transformed matrix Â by

ân1,n2 = ân1 ân2 = −1

4
cot

πn1

N
cot

πn2

N
, nj ∈ INj

; j = 1, 2 .
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The DFT(N1 × N2) maps CN1×N2 one-to-one onto itself. The
inverse DFT(N1 × N2) of size N1 × N2 is given by

A = F−1
N1

Â F−1
N2

=
1

N1N2
J′N1

FN1 Â FN2 J′N2

such that

ak1,k2 =
1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

ân1,n2 w
−k1n1
N1

w−k2n2
N2

, kj ∈ INj
; j = 1, 2 .

In practice, one says that the DFT(N1 ×N2) is defined on the time
domain or space domain CN1×N2 . The range of the DFT(N1 × N2)
is called frequency domain which is CN1×N2 too.
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In the linear space CN1×N2 we introduce the inner product of two

complex matrices A =
(
ak1,k2

)N1−1,N2−1

k1,k2=0
, B =

(
bk1,k2

)N1−1,N2−1

k1,k2=0
,

〈A, B〉 :=

N1−1∑
k1=0

N2−1∑
k2=0

ak1,k2 bk1,k2

and the Frobenius norm

‖A‖F := 〈A, A〉1/2 =
( N1−1∑
k1=0

N2−1∑
k2=0

|ak1,k2 |
2
)1/2

.
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Lemma 51

For given N1, N2 ∈ N \ {1}, the set of exponential matrices

Em1,m2 :=
(
w−k1m1
N1

w−k2m2
N2

)N1−1,N2−1

k1,k2=0

forms an orthogonal basis of CN1×N2 , where ‖Em1,m2‖F =
√
N1 N2

for all mj ∈ INj
and j = 1, 2. Any matrix A ∈ CN1×N2 can be

represented in the form

A =
1

N1 N2

N1−1∑
m1=0

N2−1∑
m2=0

〈A, Em1,m2〉Em1,m2 ,

and we have
Â =

(
〈A, Em1,m2〉

)N1−1,N2−1

m1,m2=0
.
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Proof: From Lemma 46 it follows that for pj ∈ INj
, j = 1, 2,

〈Em1,m2 , Ep1,p2〉 =

N1−1∑
k1=0

N2−1∑
k2=0

w
k1 (p1−m1)
N1

w
k2 (p2−m2)
N2

= N1N2 δ(m1−p1) mod N1
δ(m2−p2) mod N2

=

{
N1 N2 (m1, m2) = (p1, p2) ,
0 (m1, m2) 6= (p1, p2) .

Further we see that ‖Em1,m2‖F =
√
N1 N2. Since

dim CN1×N2 = N1 N2, the set of the N1 N2 exponential matrices
forms an orthogonal basis of CN1×N2 .
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In addition, we introduce the cyclic convolution

A ∗ B :=
( N1−1∑
k1=0

N2−1∑
k2=0

ak1,k2 b(m1−k1) mod N1, (m2−k2) mod N2

)N1−1,N2−1

m1,m2=0

and the entrywise product

A ◦ B :=
(
ak1,k2 bk1,k2

)N1−1,N2−1

k1,k2=0
.

In the case N1 = N2 = N, the cyclic convolution in CN×N is a
commutative, associative, and distributive operation with the unity
(δk1 mod N δk2 mod N)N−1

k1,k2=0.
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High dimensional FFT

In this chapter, we discuss methods for the approximation of
d-variate functions in high dimension d ∈ N based on sampling
along rank-1 lattices and we derive the corresponding fast
algorithms. In contrast to Chapter 3, our approach to compute the
Fourier coefficients of d-variate functions is no longer based on
tensor product methods. We introduce weighted subspaces of
L1(Td) which are characterized by the decay properties of the
Fourier coefficients. We show that functions in these spaces can be
already well approximated by d-variate trigonometric polynomials
on special frequency index sets. We study the fast evaluation of
d-variate trigonometric polynomials on finite frequency index sets.
We introduce so-called rank-1 lattices and derive an algorithm for
the fast evaluation of these trigonometric polynomials at the
lattice points. The special structure of the rank-1 lattice enables
us to perform this computation using only a one-dimensional FFT.

129 / 302



In order to reconstruct the Fourier coefficients of the d-variate
trigonometric polynomials from the polynomial values at the lattice
points exactly, the used rank-1 lattice needs to satisfy a special
condition. Using so-called reconstructing rank-1 lattices, the stable
computation of the Fourier coefficients of a d-variate trigonometric
polynomial can be again performed by employing only a
one-dimensional FFT, where the numerical effort depends on the
lattice size. In Section 6, we come back to the approximation of
periodic functions in weighted subspaces of L1(Td) on rank-1
lattices. Section 7 considers the construction of rank-1 lattices.
We present a constructive component-by-component algorithm
with less than |I |2 lattice points, where I denotes the finite index
set of nonzero Fourier coefficients that have to be computed. In
particular, this means that the computational effort to reconstruct
the Fourier coefficients depends only linearly on the dimension and
mainly on the size of the frequency index sets of the considered
trigonometric polynomials. In order to overcome the limitations of
the single rank-1 lattice approach, we generalize the proposed
methods to multiple rank-1 lattices.
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Fourier partial sums of smooth multivariate functions

In order to ensure a good quality of the obtained approximations of
d-variate periodic functions, we need to assume that these
functions satisfy certain smoothness conditions, which are closely
related to the decay properties of their Fourier coefficients. As we
have already seen for d = 1, the smoothness properties of a
function strongly influence the quality of a specific approximation
method, for example see Theorem of Bernstein.
We consider a d-variate periodic function f : Td → C with the
Fourier series

f (x) =
∑
k∈Zd

ck(f ) ei k·x . (42)

We will always assume that f ∈ L1(Td) in order to guarantee the
existence of all Fourier coefficients ck(f ), k ∈ Zd . For the definition
of function spaces Lp(Td), 1 ≤ p <∞, we refer to Section 4.
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The decay properties of Fourier coefficients can also be used to
characterize the smoothness of the function f , see Theorem 9 for
d > 1. For a detailed characterization of periodic functions and
suitable function spaces, in particular with respect to the decay
properties of the Fourier coefficients, we refer to [56, Chapter 3].
In this section, we consider the approximation of a d-variate
periodic function f ∈ L1(Td) using Fourier partial sums SI f ,

(SI f )(x) :=
∑
k∈I

ck(f ) ei k·x , (43)

where the finite index set I ⊂ Zd needs to be carefully chosen with
respect to the properties of the sequence of the Fourier coefficients(
ck(f )

)
k∈Zd . The set I is called frequency index set of the Fourier

partial sum. The operator SI : L1(Td)→ C (Td) maps f to a
trigonometric polynomial with frequencies supported on the finite
index set I .
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We call
ΠI := span {ei k·x : k ∈ I}

the space of trigonometric polynomials supported on I . We will be
interested in frequency index sets of type

I = I dp,N := {k = (ks)ds=1 ∈ Zd : ‖k‖p ≤ N} , (44)

where ‖k‖p is the usual p-(quasi-)norm

‖k‖p :=


( d∑
s=1
|ks |p

)1/p
0 < p <∞ ,

max
s=1,...,d

|ks | p =∞ .

The Figure 2 illustrates the two-dimensional frequency index sets
I 2
p,16 for p ∈ {1

2 , 1, 2,∞}, see also [69, 68, 25].
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Figure 2: Two-dimensional frequency index sets I 2
p,16 for

p ∈ { 1
2 , 1, 2, ∞}.
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If the absolute values of the Fourier coefficients decrease
sufficiently fast for growing frequency index k, we can very well
approximate the function f using only a few terms ck(f ) ei k·x,
k ∈ I ⊂ Zd with |I | <∞. In particular, we will consider a periodic
function f ∈ L1(Td) whose sequence of Fourier coefficients is
absolutely summable. This implies by Theorem 9 that f has a
continuous representative within L1(Td). We introduce the
weighted subspace Aω(Td) of L1(Td) of functions f : Td → C
equipped with the norm

‖f ‖Aω(Td ) :=
∑
k∈Zd

ω(k)|ck(f )| , (45)

if f has the Fourier expansion (42). Here ω : Zd → [1,∞) is called
weight function and characterizes the decay of the Fourier
coefficients. If ω is increasing for ‖k‖p →∞, then the Fourier
coefficients ck(f ) of f ∈ Aω(Td) have to decrease faster than the
weight function ω increases with respect to k = (ks)ds=1 ∈ Zd .
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Example 52

Important examples for a weight function ω are

ω(k) = ωd
p (k) := max {1, ‖k‖p}

for 0 < p ≤ ∞. Instead of the p-norm, one can also consider a
weighted p-norm. To characterize function spaces with dominating
smoothness, also weight functions of the form

ω(k) =
d∏

s=1

max {1, |ks |}

have been considered, see e.g. [63, 10, 24].
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Observe that ω(k) ≥ 1 for all k ∈ Zd . Let ω1 be the special weight
function with ω1(k) = 1 for all k ∈ Zd and A(Td) := Aω1(Td).
The space A(Td) is called Wiener algebra. Further, we recall that
C (Td) denotes the Banach space of continuous d-variate
2π-periodic functions. The norm of C (Td) coincides with the norm
of L∞(Td). The next lemma, see [24, Lemma 2.1], states that the
embeddings Aω(Td) ⊂ A(Td) ⊂ C (Td) are true.

Lemma 53

Each function f ∈ A(Td) has a continuous representative. In
particular, we obtain Aω(Td) ⊂ A(Td) ⊂ C (Td) with the usual
interpretation.
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Proof: Let f ∈ Aω(Td) be given. Then the function f belongs to
A(Td), since the following estimate holds∑

k∈Zd

|ck(f )| ≤
∑
k∈Zd

ω(k) |ck(f )| <∞ .

Now let f ∈ A(Td) be given. The summability of the sequence(
|ck(f )|

)
k∈Zd of the absolute values of the Fourier coefficients

implies the summability of the sequence
(
|ck(f )|2

)
k∈Zd of the

squared absolute values of the Fourier coefficients and, thus, the
embedding A(Td) ⊂ L2(Td) is proved using Parseval equation (4).
Clearly, the function g(x) =

∑
k∈Zd ck(f ) ei k·x is a representative of

f in L2(Td) and also in A(Td). We show that g is the continuous
representative of f . The absolute values of the Fourier coefficients
of f ∈ A(Td) are summable. So, for each ε > 0 there exists a
finite index set I ⊂ Zd with

∑
k∈Zd\I |ck(f )| < ε

4 .

138 / 302



For a fixed x0 ∈ Td , we estimate

|g(x0)− g(x)| =
∣∣ ∑

k∈Zd

ck(f ) ei k·x0 −
∑
k∈Zd

ck(f ) ei k·x∣∣
≤
∣∣∑

k∈I
ck(f ) ei k·x0 −

∑
k∈I

ck(f ) ei k·x∣∣+
ε

2
.

The trigonometric polynomial (SI f )(x) =
∑

k∈I ck ei k·x is a
continuous function. Accordingly, for ε > 0 and x0 ∈ Td there
exists a δ0 > 0 such that ‖x0 − x‖1 < δ0 implies
|(SI f )(x0)− (SI f )(x)| < ε

2 . Then we obtain |g(x0)− g(x)| < ε for
all x with ‖x0 − x‖1 < δ0.
In particular for our further considerations on sampling methods, it
is essential that we identify each function f ∈ A(Td) with its
continuous representative in the following. Note that the definition
of Aω(Td) in (45) using the Fourier series representation of f
already comprises the continuity of the contained functions.
Considering Fourier partial sums, we will always call them exact
Fourier partial sums in contrast to approximate partial Fourier
sums that will be introduced later.
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Lemma 54

Let IN = {k ∈ Zd : ω(k) ≤ N}, N ∈ R, be a frequency index set
being defined by the weight function ω. Assume that the
cardinality |IN | is finite.
Then the exact Fourier partial sum

(SIN f )(x) :=
∑
k∈IN

ck(f ) ei k·x (46)

approximates the function f ∈ Aω(Td) and we have

‖f − SIN f ‖L∞(Td ) ≤ N−1 ‖f ‖Aω(Td ) .
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Proof: We follow the ideas of [24, Lemma 2.2]. Let f ∈ Aω(Td).
Obviously, SIN f ∈ Aω(Td) ⊂ C (Td) and we obtain

‖f − SIN f ‖L∞(Td ) = ess sup
x∈Td

|(f − SIN f )(x)|

= ess sup
x∈Td

∣∣ ∑
k∈Zd\IN

ck(f ) ei k·x∣∣
≤

∑
k∈Zd\IN

|ck(f )| ≤ 1

inf
k∈Zd\IN

ω(k)

∑
k∈Zd\IN

ω(k)| ck(f )|

≤ 1

N

∑
k∈Zd

ω(k) |ck(f )| = N−1‖f ‖Aω(Td ).
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Remark 55

For the weight function ω(k) =
(

max {1, ‖k‖p}
)α/2

with
0 < p ≤ ∞ and α > 0 we similarly obtain for the index set
IN = I dp,N given in (44)

‖f − SI dp,N
f ‖L∞(Td ) ≤ N−α/2

∑
k∈Zd\I dp,N

(
max {1, ‖k‖p}

)α/2|ck(f )|

≤ N−α/2 ‖f ‖Aω(Td ) .

The error estimates can be also transferred to other norms. Let
Hα,p(Td) denote the periodic Sobolev space of isotropic
smoothness consisting of all f ∈ L2(Td) with finite norm

‖f ‖Hα,p(Td ) :=
∑
k∈Zd

(
max {1, ‖k‖p}

)α |ck(f )|2 , (47)

where f possesses the Fourier expansion (42) and where α > 0 is
the smoothness parameter.
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Remark 55 (continue)

Using the Cauchy–Schwarz inequality, we obtain here

‖f − SI dp,N
f ‖L∞(Td ) ≤

∑
k∈Zd\I dp,N

|ck(f )|

≤
( ∑

k∈Zd\I dp,N

‖k‖−αp

)1/2( ∑
k∈Zd\I dp,N

‖k‖αp |ck(f )|2
)1/2

≤
( ∑

k∈Zd\I dp,N

‖k‖−αp

)1/2 ‖f ‖Hα,p(Td ) .

Note that this estimate is related to the estimates on the decay of
Fourier coefficients for functions f ∈ C r (Td) in (1) and Theorem
9. For detailed estimates of the approximation error of Fourier
partial sums in these spaces, we refer to [36].
As we will see later, for efficient approximation, other frequency
index sets, as e.g. frequency index sets related to the hyperbolic
crosses, are of special interest. The corresponding approximation
errors have been studied in [30, 31, 8]. 143 / 302



Lemma 56

Let N ∈ N and the frequency index set
IN := {k ∈ Zd : 1 ≤ ω(k) ≤ N} with the cardinality 0 < |IN | <∞
be given.
Then the norm of the operator SIN that maps f ∈ Aω(Td) to its
Fourier partial sum SIN f on the index set IN is bounded by

1

mink∈Zd ω(k)
≤ ‖SIN‖Aω(Td )→C(Td ) ≤

1

mink∈Zd ω(k)
+

1

N
.
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Proof: 1. Since |IN | is finite, there exists mink∈IN ω(k). The
definition of IN implies that mink∈Zd ω(k) = mink∈IN ω(k). To
obtain the upper bound for the operator norm we apply the
triangle inequality and Lemma 54,

‖SIN‖Aω(Td )→C(Td ) = sup
f ∈Aω(Td )
‖f ‖Aω(Td )

=1

‖SIN f ‖C(Td )

≤ sup
f ∈Aω(Td )
‖f ‖Aω(Td )

=1

‖SIN f − f ‖C(Td ) + sup
f ∈Aω(Td )
‖f ‖Aω(Td )

=1

‖f ‖C(Td )

≤ sup
f ∈Aω(Td )
‖f ‖Aω(Td )

=1

∑
k∈Zd

|ck(f )|+ N−1‖f ‖Aω(Td )



≤ sup
f ∈Aω(Td )
‖f ‖Aω(Td )

=1

∑
k∈Zd

ω(k)

mink̃∈Zd ω(k̃)
|ck(f )|+ N−1‖f ‖Aω(Td )


≤ 1

mink∈Zd ω(k)
+

1

N
.
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2. To prove the lower bound we construct a suitable example. Let
k′ ∈ IN be a frequency index with ω(k′) = mink∈Zd ω(k). We
choose the trigonometric polynomial g(x) = 1

ω(k′) ei k′·x which is an

element of Aω(Td) with ‖g‖Aω(Td ) = 1. Since SINg = g , we find

‖SIN‖Aω(Td )→C(Td ) ≥ ‖SINg‖C(Td )

= ‖g‖C(Td ) = g(0)

=
1

ω(k′)
=

1

min
k∈IN

ω(k)
.
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Our observations in this section imply that smooth functions with
special decay of their Fourier coefficients can be well approximated
by d-variate trigonometric polynomials on special index sets. In the
next section we will therefore study the efficient evaluation of
d-variate trigonometric polynomials on special grids, as well as the
corresponding efficient computation of their Fourier coefficients.
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Fast evaluation of multivariate trigonometric
polynomials

As we have seen in the last section, smooth functions in Aω(Td)
can be already well approximated by d-variate trigonometric
polynomials on index sets IN = {k ∈ Zd : ω(k) ≤ N}. In Figure 2,
we have seen possible two-dimensional index sets, where
ω(k) = max {1, ‖k‖p}. Therefore we study trigonometric
polynomials p ∈ ΠI on the d-dimensional torus Td ∼= [0, 2π)d of
the form

p(x) =
∑
k∈I

p̂k ei k·x (48)

with Fourier coefficients p̂k ∈ C and with a fixed finite frequency
index set I ⊂ Zd of cardinality |I |.
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Let X ⊂ [0, 2π)d be a finite set of sampling points with |X |
elements. Now we are interested in solving the following two
problems:

(i) Evaluation of trigonometric polynomials. For given Fourier
coefficients p̂k, k ∈ I , how to compute the polynomial values
p(x) for all x ∈ X efficiently?

(ii) Evaluation of the Fourier coefficients. For given polynomial
values p(x), x ∈ X , how to compute p̂k for all k ∈ I
efficiently?

The second problem also involves the question, how the sampling
set X has to be chosen such that p̂k for all k ∈ I can be uniquely
computed in a stable way.
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Let us consider the |X |-by-|I | Fourier matrix A = A(X , I ) defined
by

A = A(X , I ) :=
(

ei k·x)
x∈X , k∈I ∈ C|X |×|I | ,

as well as the two vectors p := (p(x))x∈X ∈ C|X | and
p̂ := (p̂(k))k∈I ∈ C|I |. To solve problem (i), we need to perform
the matrix-vector multiplication

p = A p̂ . (49)

To compute p̂ from p, we have to solve the inverse problem. For
arbitrary polynomial p ∈ ΠI this problem is only uniquely solvable,
if |X | ≥ |I | and if A possesses full rank |I |. In other words, the
sampling set X needs to be large enough and the obtained samples
need to contain “enough information” about p. Then
AH A ∈ C|I |×|I | is invertible, and we have

p̂ = (AH A)−1 AH p . (50)
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In order to ensure stability of this procedure, we want to assume
that the columns of A are orthogonal, i.e., AHA = M I|I |, where I|I |
is the |I |-by-|I | unit matrix and M = |X |. Then (50) simplifies to

p̂ =
1

M
AH p .

In the following, we will consider very special sampling sets X ,
so-called rank-1 lattices.

151 / 302



Rank-1 lattices

Initially, rank-1 lattices were introduced as sampling schemes for
(equally weighted) cubature formulas in the late 1950’s and 1960’s,
see [35]. A summary of the early work on cubature rules based on
rank-1 lattice sampling can be found in [46]. The recent increased
interest in rank-1 lattices is particularly caused by new approaches
to describe lattice rules that allow optimal theoretical error
estimates for cubature formulas for specific function classes, see
e.g. [60]. We also refer to [58] for a survey on lattice methods for
numerical integration.
In contrast to general lattices which are spanned by several vectors,
we consider only sampling on so-called rank-1 lattices. This
simplifies the evaluation of trigonometric polynomials essentially
and allows to derive necessary and sufficient conditions for unique
or stable reconstruction.
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For a given vector z ∈ Zd and a positive integer M ∈ N we define
the rank-1 lattice

X = Λ(z,M) :=
{

xj :=
2π

M
(j z mod M 1) ∈ [0, 2π)d : j = 0, . . . ,M − 1

}
(51)

as spatial discretization in [0, 2π)d . Here, 1 := (1)ds=1 ∈ Zd and
for z = (zs)ds=1 ∈ Zd the term j z mod M 1 denotes the vector
(j zs mod M)ds=1. We call z the generating vector and M the
lattice size of the rank-1 lattice Λ(z,M). To ensure that Λ(z,M)
has exactly M distinct elements, we assume that M is coprime
with at least one component of z. Further, for a given rank-1
lattice Λ(z,M) with generating vector z ∈ Zd we call the set

Λ⊥(z,M) := {k ∈ Zd : k · z ≡ 0 mod M} (52)

the integer dual lattice of Λ(z,M). The integer dual lattice
Λ⊥(z,M) will play an important role, when we approximate the
Fourier coefficients of a function f using only samples of f on the
rank-1 lattice Λ(z,M).

153 / 302



Example 57

Let d = 2, z = (1, 3)> and M = 11, then we obtain

Λ(z,M) =
2π

11

{( 0
0

)
,

(
1
3

)
,

(
2
6

)
,

(
3
9

)
,

(
4
1

)
,

(
5
4

)
,(

6
7

)
,

(
7

10

)
,

(
8
2

)
,

(
9
5

)
,

(
10
8

)}
,

and Λ⊥(z,M) contains all vectors k = (k1, k2)> ∈ Z2 with
k1 + 3k2 ≡ 0 mod 11. Figure 3 illustrates the construction of this
two-dimensional rank-1 lattice.
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z/M

z = (1, 3)>
M = 11

0 2π/3 4π/3 2π
0

2π/3

4π/3

2π

Figure 3: Rank-1 lattice Λ(z,M) of Example 57.
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A rank-1 lattice possesses the following important property:

Lemma 58

Let a frequency index set I ⊂ Zd of finite cardinality and a rank-1
lattice X = Λ(z,M) be given.
Then two distinct columns of the corresponding M-by-|I | Fourier
matrix A are either orthogonal or equal, i.e., the (h, k)th entry
(AH A)h, k ∈ {0,M} for all h, k ∈ I .

Proof: The matrix AH A contains all inner products of two
columns of the Fourier matrix A, i.e., the (h, k)th entry (AH A)h,k

is equal to the inner product of the kth column and the hth
column of A. For k · z 6≡ h · z mod M we obtain

(AH A)h, k =
M−1∑
j=0

(
e2πi [(k−h)·z]/M

)j
=

e2πi (k−h)·z − 1

e2πi [(k−h)·z]/M − 1
= 0 ,

since k− h ∈ Zd .
For k · z ≡ h · z mod M it follows immediately that the kth and
hth column of A are equal and that (AH A)h, k = M.
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Evaluation of trigonometric polynomials on rank-1
lattice

Let us now consider the efficient evaluation of a d-variate
trigonometric polynomial p supported on I on the sampling set X
being a rank-1 lattice X = Λ(z,M). We have to compute p(xj) for
all M nodes xj ∈ Λ(z,M), i.e.,

p(xj) =
∑
k∈I

p̂k ei k·xj =
∑
k∈I

p̂k e2πi j (k·z)/M , j = 0, . . . ,M − 1.

We observe that {k · z mod M : k ∈ I} ⊂ {0, . . . ,M − 1} and
consider the values

ĝ` =
∑
k∈I

`≡k·z mod M

p̂k , ` = 0, . . . ,M − 1 . (53)
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Then, we can write

p(xj) =
∑
k∈I

p̂k e2πi j (k·z)/M =
M−1∑
`=0

∑
k∈I

`≡k·z mod M

p̂k e2πi j`/M

=
M−1∑
`=0

ĝ` e2πi j`/M (54)

for j = 0, . . . ,M − 1. Therefore, the right-hand side of (54) can be
evaluated using a one-dimensional FFT of length M with at most
C · (M logM + d |I |) arithmetic operations, where the constant C
does not depend on the dimension d . Here we assume that ĝ`,
` = 0, . . . ,M, can be computed with C d |I | arithmetic operations.
The fast realization of the matrix-vector product in (49) or
equivalently of (54) is presented in the following
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Algorithm: (Lattice based FFT (LFFT))

Input: M ∈ N lattice size of rank-1 lattice Λ(z,M),
z ∈ Zd generating vector of Λ(z,M),
I ⊂ Zd finite frequency index set,
p̂ = (p̂k)k∈I Fourier coefficients of p ∈ ΠI .

1 Set ĝ := (0)M−1
`=0 .

2 For each k ∈ I do ĝk·z mod M := ĝk·z mod M + p̂k endfor.

3 Apply a one-dimensional FFT of length M in order to
compute p := F−1

M

(
(ĝ`)

M−1
`=0

)
.

4 Compute p := M p.

Output: p = A p̂ vector of values of the trigonometric polynomial
p ∈ ΠI .
Arithmetic cost: O(M logM + d |I |).
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Adjoint single lattice based FFT (aLFFT)

We immediately obtain also a fast algorithm for the matrix-vector
multiplication with the adjoint Fourier matrix AH.

Input: M ∈ N lattice size of rank-1 lattice Λ(z,M),
z ∈ Zd generating vector of Λ(z,M),
I ⊂ Zd finite frequency index set,

p =
(
p( j

M z)
)M−1

j=0
values of the trigonometric polynomial

p ∈ ΠI .

1 Apply a one-dimensional FFT of length M in order to
compute ĝ := FM p.

2 Set â := (0)k∈I .

3 For each k ∈ I do âk := âk + ĝk·z mod M endfor.

Output: â = AH p with the adjoint Fourier matrix AH.
Arithmetic cost: O(M logM + d |I |).
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Evaluation of the Fourier coefficients

Our considerations of the Fourier matrix A = A(X , I ) in (49) and
(50) show that a unique evaluation of all Fourier coefficients of an
arbitrary d-variate trigonometric polynomial p ∈ ΠI is only
possible, if the |X |-by-|I | matrix A has full rank |I |. By Lemma 58
we have seen that for a given frequency index set I and a rank-1
lattice Λ(z,M), two distinct columns of A are either orthogonal or
equal. Therefore, A has full rank if and only if for all distinct k,
h ∈ I ,

k · z 6≡ h · z mod M . (55)

If (55) holds, then the sums determining ĝ` in (53) contain only
one term for each ` and no aliasing occurs. We define the
difference set of the frequency index set I as

D(I ) := {k− l : k, l ∈ I} . (56)
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Then the condition (55) is equivalent to

k · z 6≡ 0 mod M for all k ∈ D(I ) \ {0} . (57)

Therefore, we define a reconstructing rank-1 lattice to a given
frequency index set I as a rank-1 lattice satisfying (55) or
equivalently (57) and denote it by

Λ(z,M, I ) :=
{

x ∈ Λ(z,M) : k ∈ D(I )\{0}with k·z 6≡ 0 mod M
}
.

The condition (57) ensures that the mapping of k ∈ I to k · z
mod M ∈ {0, . . . ,M − 1} is injective. Assuming that we have a
reconstructing rank-1 lattice, we will be able to evaluate the
Fourier coefficients of p ∈ ΠI uniquely.
If condition (57) is satisfied, then Lemma 58 implies AH A = M IM
for the Fourier matrix A such that p̂ = (p̂k)k∈I = 1

M AH p.
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Equivalently, for each Fourier coefficient we have

p̂k =
1

M

M−1∑
j=0

p(xj) e−2πi j (k·z)/M =
1

M

M−1∑
j=0

p(xj) e−2πi j`/M

for all k ∈ I and ` = k · z mod M. Algorithm 164 computes all
Fourier coefficients f̂k using only a one-dimensional FFT of length
M and the inverse mapping of k 7→ k · z mod M, see also [24,
Algorithm 3.2].
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Reconstruction via reconstructing rank-1 lattice

Input: I ⊂ Zd finite frequency index set,
M ∈ N lattice size of reconstructing rank-1 lattice

Λ(z,M, I ),
z ∈ Zd generating vector of reconstructing rank-1 lattice

Λ(z,M, I ),

p =
(
p
(

2π
M (j z mod M 1)

))M−1

j=0
values of p ∈ ΠI .

1 Compute â := AH p using Algorithm above.

2 Set p̂ := M−1 â.

Output: p̂ = M−1AH p = (p̂k)k∈I Fourier coefficients supported on
I .
Arithmetic cost: O(M logM + d |I |).

164 / 302



Example 59

Let I d∞,N be the full grid defined by (44). Then straightforward
calculation shows that the rank-1 lattice Λ(z,M) with the
generating vector z = (1, 2N + 2, . . . , (2N + 2)d−1)> and the
lattice size M = (2N + 2)d is a reconstructing rank-1 lattice to the
full grid I d∞,N . It provides a perfectly stable spatial discretization.
The resulting reconstruction algorithm is based on a
one-dimensional FFT of size (2N + 2)d , and has similar arithmetic
costs as the usual d-dimensional tensor-product FFT. Our goal is
to construct smaller reconstructing rank-1 lattices for special index
sets, such that the arithmetic cost for the reconstruction of Fourier
coefficients can be significantly reduced.
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As a corollary of the observations above we show that a
reconstructing rank-1 lattice implies the following important
quadrature rule, see [59].

Theorem 60

For a given finite frequency index set I and a corresponding
reconstructing rank-1 lattice Λ(z,M, I ) we have∫

[0, 2π]d
p(x) dx =

1

M

M−1∑
j=0

p(xj)

for all trigonometric polynomials p ∈ ΠD(I ), where D(I ) is defined
by (56).
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Proof: For xj = 2π
M (jz mod M 1) ∈ Λ(z,M, I ) it follows that

M−1∑
j=0

p(xj) =
M−1∑
j=0

( ∑
k∈D(I )

p̂k e2πi j (k·z)/M
)

=
∑

k∈D(I )

p̂k

(M−1∑
j=0

e2πi j (k·z)/M
)
.

According to (57) we have k · z 6≡ 0 mod M for all k ∈ D(I ) \ {0}.
Therefore

M−1∑
j=0

e2πi j (k·z)/M =

{
0 k ∈ D(I ) \ {0} ,
M k = 0 ,

and the equation above simplifies to

M−1∑
j=0

p(xj) = M p̂(0) = M

∫
[0, 2π]d

p(x) dx.
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Efficient function approximation on rank-1 lattices

Now we come back to the problem of approximation of a smooth
d-variate periodic function f by a Fourier series (42) or by a
Fourier partial sum (43). Let f be an arbitrary continuous function
in A(Td) ∩ C (Td). Then we determine approximate values f̂k of
the Fourier coefficients ck(f ) using only the sampling values on a
rank-1 lattice Λ(z,M) as given in (51) and obtain

f̂k :=
1

M

M−1∑
j=0

f
(2π

M
(j z mod M 1)

)
e−2πi j (k·z)/M (58)

=
1

M

M−1∑
j=0

∑
h∈Zd

ch(f ) e2πi j [(h−k)·z]/M

=
∑
h∈Zd

ck+h(f )
1

M

M−1∑
j=0

e2πi j (h·z)/M =
∑

h∈Λ⊥(z,M)

ck+h(f ) ,

where the integer dual lattice Λ⊥(z,M) is defined by (52).
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Obviously we have 0 ∈ Λ⊥(z,M) and hence

f̂k = ck(f ) +
∑

h∈Λ⊥(z,M)\{0}

ck+h(f ). (59)

The absolute convergence of the series of the Fourier coefficients
of f ensures that all terms in the calculation above are
well-defined. We call f̂k the approximate Fourier coefficients of f .
The formula (59) can be understood as an aliasing formula for the
rank-1 lattice Λ(z,M). If the sum∑

h∈Λ⊥(z,M)\{0}

|ck+h(f )|

is sufficiently small, then f̂k is a convenient approximate value of
ck(f ).
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Assume that f can be already well approximated by a
trigonometric polynomial p on a frequency index set I . Further,
assume that we have a corresponding reconstructing rank-1 lattice
X = Λ(z,M, I ). Then we can compute the approximative Fourier
coefficients f̂k with k ∈ I using Algorithm 164 by employing M
sample values f

(
2π
M (j z mod M 1)

)
instead of the corresponding

polynomial values. In this way, we obtain f̂k, k ∈ I , with
arithmetical costs of O(M logM + d |I |).

Now we want to study the approximation error that occurs if the
exact Fourier coefficients ck(f ) are replaced by the approximate
Fourier coefficients f̂k in (59). We consider the corresponding
approximate Fourier partial sum on the frequency index set
IN = {k ∈ Zd : ω(k) ≤ N}. Let Λ(z,M, IN) be a reconstructing
rank-1 lattice for IN and Λ⊥(z,M, IN) the corresponding integer
dual lattice (52). By definition of the reconstructing rank-1 lattice
it follows that IN ∩ Λ⊥(z,M, IN) = {0}. Generally we can show the
following result:
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Lemma 61

Let I ⊂ Zd be an arbitrary finite frequency index set and let
Λ(z,M, I ) be a reconstructing rank-1 lattice with the integer dual
lattice Λ⊥(z,M, I ).
Then we have{

k + h : k ∈ I ,h ∈ Λ⊥(z,M, I ) \ {0}
}
⊂ Zd \ I .

Proof: Assume to the contrary that there exist k ∈ I and
h ∈ Λ⊥(z,M, I ) \ {0} such that k + h ∈ I . Since Λ(z,M, I ) is a
reconstructing rank-1 lattice for I , it follows that
0 6= h = (k + h)− k ∈ D(I ). Thus, h ∈ D(I ) ∩ Λ⊥(z,M, I ) \ {0}.
But this is a contradiction, since on the one hand (57) implies that
h · z 6≡ 0 mod M, and on the other hand h · z ≡ 0 mod M by
definition of Λ⊥(z,M, I ).
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Theorem 62

Let f ∈ Aω(Td) and let a frequency index set
IN = {k ∈ Zd : ω(k) ≤ N} of finite cardinality be given. Further,
let Λ(z,M, IN) be a reconstructing rank-1 lattice for IN . Moreover,
let the approximate Fourier partial sum

(SΛ
IN
f )(x) :=

∑
k∈IN

f̂k ei k·x (60)

of f be determined by

f̂k :=
1

M

M−1∑
j=0

f
(2π

M
(j z mod M 1)

)
e−2πi j (k·z)/M , k ∈ IN ,

(61)
that are computed using the values on the rank-1 lattice
Λ(z,M, IN).
Then we have

‖f − SΛ
IN
f ‖L∞(Td ) ≤ 2N−1 ‖f ‖Aω(Td ) . (62)
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Proof: Using the triangle inequality, we find

‖f − SΛ
IN
f ‖L∞(Td ) ≤ ‖f − SIN f ‖L∞(Td ) + ‖SΛ

IN
f − SIN f ‖L∞(Td ) .

For the first term, Lemma 54 yields

‖f − SIN f ‖L∞(Td ) ≤ N−1‖f ‖Aω(Td ) .

For the second term we obtain by using (59)

‖SΛ
IN
f − SIN f ‖L∞(Td ) = ess sup

x∈Td

∣∣∑
k∈IN

(
f̂k − ck(f )

)
ei k·x∣∣

≤
∑
k∈IN

∣∣ ∑
h∈Λ⊥(z,M)\{0}

ck+h(f )
∣∣

≤
∑
k∈IN

∑
h∈Λ⊥(z,M)\{0}

|ck+h(f )| .
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By Lemma 61 it follows that

‖SΛ
IN
f − SIN f ‖L∞(Td ) ≤

∑
k∈Zd\IN

|ck(f )| ≤ 1

infh∈Zd\IN ω(h)

∑
k∈Zd

ω(k) |ck(f )|

≤ N−1‖f ‖Aω(Td )

and hence the assertion.
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Theorem 62 states that the worst case error of the approximation
SΛ
IN
f in (60) given by the approximate Fourier coefficients

computed from samples on the reconstructing rank-1 lattice
Λ(z,M, IN), is qualitatively as good as the worst case error of the
approximation SIN f , see (46). Improved error estimates for the
approximation of functions in Aω(Td) with a special weight
function ω as in Remark 55 can be similarly derived. The
approximation error essentially depends on the considered norms.
In particular, we have focussed on the L∞(Td)-norm on the
left-hand side and the weighted `1(Zd)-norm of the Fourier
coefficients on the right-hand side. Further results with different
norms are given in [24, 66].
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Remark 63

The idea to use special rank-1 lattices Λ(z,M) of Korobov type as
sampling schemes to approximate functions by trigonometric
polynomials has been already considered by V.N. Temlyakov [62].
Later, D. Li and F.J. Hickernell studied a more general setting in
[39]. They presented an approximation error using an aliasing
formula as (59) for the given rank-1 lattice Λ(z,M). But both
approaches did not lead to a constructive way to determine rank-1
lattices of high quality. In contrast to their approach, we have
constructed the frequency index set IN := {k ∈ Zd : ω(k) ≤ N}
with |IN | <∞ depending on the arbitrary weight function ω. The
problem to find a reconstructing rank-1 lattice Λ(z,M, IN) which is
well adapted to the frequency index set IN will be studied in the
next section. Approximation properties of rank-1 lattices have been
also investigated in information based complexity and applied
analysis, see e.g. [72, 38, 45].
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Reconstructing rank-1 lattices

As shown in the two last sections, we can use so-called
reconstructing rank-1 lattices in order to compute the Fourier
coefficients of a d-variate trigonometric polynomial in ΠI in a
stable way by applying a one-dimensional FFT. The reconstructing
rank-1 lattice Λ(z,M, I ) for a frequency index set I is determined
as a rank-1 lattice Λ(z,M) in (51) satisfying the condition (55).
The arithmetic costs to reconstruct the Fourier coefficients of the
d-variate trigonometric polynomial p from its sampling values of
the given rank-1 lattice mainly depend on the number M of needed
sampling values. In this section we will present a deterministic
procedure to obtain reconstructing rank-1 lattices using a
component-by-component approach. We start with considering the
problem, how large the number M of sampling values in Λ(z,M, I )
needs to be, see also [25, 28]. For simplicity, we consider only a
symmetric frequency index set I ⊂ Zd satisfying the condition that
for each k ∈ I also −k ∈ I . For example, all frequency index sets in
Example 57 and Figure 2 are symmetric.
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Theorem 64

Let I be a symmetric frequency index set with finite cardinality |I |
such that I ⊂ [− |I |2 ,

|I |
2 ]d ∩ Zd .

Then there exists a reconstructing rank-1 lattice X = Λ(z,M, I )
with prime cardinality M, such that

|I | ≤ M ≤ |D(I )| ≤ |I |2 − |I |+ 1, (63)

where D(I ) denotes the difference set (56).

Proof: 1. The lower bound |I | ≤ M is obvious, since we need a
Fourier matrix A = A(X , I ) ∈ C|X |×|I | of full rank |I | in (50) to
reconstruct p̂, and this property follows from (55).
Recall that |D(I )| is the number of all pairwise distinct vectors
k− l with k, l ∈ I . We can form at most |I | (|I | − 1) + 1 pairwise
distinct vectors in D(I ). Therefore we obtain the bound
|D(I )| ≤ |I |2 − |I |+ 1.
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2. In order to show that there exists a reconstructing rank-1 lattice
with M ≤ |D(I )|, we choose M as a prime number satisfying
|D(I )|/2 < M ≤ |D(I )| and show that there exists a generating
vector z such that the condition (57) is satisfied for
X = Λ(z,M, I ). The prime number M can be always chosen in
(|D(I )|/2, |D(I )|] by Bertrand’s postulate.

For the special case d = 1 we have I ⊂ [− |I |2 ,
|I |
2 ] ∩ Z. Taking

z = z1 = 1, each M ≥ |I |+ 1 satisfies the assumption
k · z = k 6≡ 0 mod M for k ∈ D(I ) ⊂ [−|I |, |I |]. In particular, we
can take M as a prime number in (|D(I )|/2, |D(I )|], since we have
|D(I )| ≥ 2 |I | in this case.
Let us now assume that d ≥ 2. We need to show that there exists
a generating vector z such that

k · z 6≡ 0 mod M for all k ∈ D(I ) \ {0} ,

and want to use an induction argument with respect to the
dimension d .
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We consider the projection of D(I ) on the index set

D(Id−1) := {k̃ = (kj)
d−1
j=1 : k = (kj)

d
j=1 ∈ D(I )} ,

such that each k ∈ D(I ) can be written as (k̃>, kd)> with
k̃ ∈ D(Id−1). Assume that we have found already a vector
z̃ ∈ Zd−1 such that the condition

k̃ · z̃ 6≡ 0 mod M for all k̃ ∈ D(Id−1) \ {0} (64)

is satisfied. We show now that there exists a vector z = (z̃>, zd)>

with zd ∈ {1, . . . ,M − 1} such that

k · z = k̃ · z̃ + kdzd 6≡ 0 mod M for all k ∈ D(I ) \ {0} . (65)

For that purpose we will use a counting argument. We show that
there are at most (|D(Id−1)| − 1)/2 integers zd ∈ {1, . . . ,M − 1}
with the property

k ·z = k̃ · z̃ +kdzd ≡ 0 mod M for at least one k ∈ D(I )\{0} .
(66)

Since (|D(Id−1)| − 1)/2 ≤ (|D(I )| − 1)/2 < M − 1, we always find
a zd satisfying the desired condition (65).

180 / 302



3. We show now that for each pair of elements k, −k with
k = (k̃>, kd)> ∈ D(I ) \ {0} and given z̃ satisfying (64), there is at
most one zd such that (66) is satisfied.
If kd = 0, then (66) yields k̃ · z̃ ≡ 0 mod M contradicting (64).
Thus in this case no zd is found to satisfy (66).
If k̃ = 0 and kd 6= 0, then (66) yields kdzd ≡ 0 mod M. Since
|kd | ≤ |I | < M and zd ∈ {1, . . . ,M − 1}, it follows that kdzd and
M are coprime such that no zd is found to satisfy (66).
If k̃ 6= 0 and kd 6= 0, then (66) yields k̃ · z̃ ≡ −kdzd mod M. Since
k̃ · z̃ 6= 0 by assumption (64) and kd and M are coprime, there
exists one unique solution zd of this equation. The same unique
solution zd is found, if we replace k = (k̃>, kd)> by
−k = (−k̃>,−kd)> in (66).
Taking into account that D(Id−1) and D(I ) always contain the
corresponding zero vector, it follows that at most (|D(Id−1)| − 1)/2
integers satisfy (66). Thus the assertion is proved.
The idea of the proof of Theorem 64 leads us also to an algorithm,
the so-called component-by-component Algorithm 182. This
algorithm computes for a known lattice size M the generating
vector z of the reconstructing rank-1 lattice, see also [25]. 181 / 302



Component-by-component lattice search

Input: M ∈ N prime, cardinality of rank-1 lattice,
I ⊂ Zd finite frequency index set.

1 Set z1 := 1.

2 For s = 2, . . . , d do
form the set Is :=

{
(kj)

s
j=1 : k = (kj)

d
j=1 ∈ I

}
search for one zs ∈ [1, M − 1] ∩ Z with

|{(z1, . . . , zs)> · k mod M : k ∈ Is}| = |Is | .

end for.

Output: z = (zj)
d
j=1 ∈ Nd generating vector.
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The construction of the generating vector z ∈ Nd in Algorithm 182
requires at most 2d |I |M ≤ 2d |I |3 arithmetic operations. For each
component zs , s ∈ {2, . . . , d}, of the generating vector z in the
component-by-component step s, the tests for the reconstruction
property (54) for a given component zs , in step 2 of Algorithm 182
require at most s |I | multiplications, (s − 1) |I | additions and |I |
modulo operations. Since each component zs , s ∈ {2, . . . , d}, of
the generating vector z can only take M − 1 possible values, the
construction requires at most d |I | (M − 1) ≤ 2 d |I |M arithmetic
operations in total.
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Remark 65

The lower bound for the number M in Theorem 64 can be
improved for arbitrary frequency index sets, if we employ the exact
cardinalities of the projected index sets
Is := {(kj)sj=1 : k = (kj)

d
j=1 ∈ I}, see also [25].

The assumption on the index set can be also relaxed. In particular,
the complete index set can be shifted in Zd without changing the
results.
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A drawback of Algorithm 182 is that the cardinality M needs to be
known in advance. As we have shown in Theorem 64, M can be
always taken as a prime number satisfying |D(I )|/2 < M ≤ |D(I )|.
But this may be far away from an optimal choice. Once we have
discovered a reconstructing rank-1 lattice Λ(z,M, I ) satisfying for
all distinct k, h ∈ I ,

k · z 6≡ h · z mod M ,

we can ask for M ′ < M such that for all distinct k, h ∈ I ,

k · z 6≡ h · z mod M ′

is still true for the computed generating vector z. This leads to the
following simple algorithm for lattice size decreasing, see also [25].
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Lattice size decreasing

Input: M ∈ N cardinality of rank-1 lattice,
I ⊂ Zd finite frequency index set,
z ∈ Nd generating vector of reconstructing rank-1 lattice

Λ(z,M, I ).

1 For j = |I |, . . . ,M do
if |{k · z mod j : k ∈ I}| = |I | then
Mmin := j , stop
end if
end for.

Output: Mmin reduced lattice size.
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There exist also other strategies to determine reconstructing
rank-1 lattices for given frequency index sets, where the lattice size
M needs not to be known a priori, see e.g. [25, Algorithms 4 and
5]. These algorithms are also component-by-component algorithms
and compute complete reconstructing rank-1 lattices, i.e., the
generating vectors z ∈ Nd and the lattice sizes M ∈ N, for a given
frequency index set I . The algorithms are applicable for arbitrary
frequency index sets of finite cardinality |I |.
As we have seen in Theorem 64 the sampling size M can be
bounded by the cardinality of the difference set D(I ). Interestingly,
this cardinality strongly depends on the structure of I .
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Example 66

Let I = I dp,N := {k ∈ Zd : ‖k‖p ≤ N}, N ∈ N, be the `p(Zd)-ball
with 0 < p ≤ ∞ and the size N ∈ N, see Figure 2. The cardinality
of the frequency index set I dp,N is bounded by

cp,d N
d ≤ |I dp,N | ≤ Cd ,p N

d , while the cardinality of the difference

set satisfies cp,d N
d ≤ |D(I dp,N)| ≤ Cd ,p 2d Nd with the some

constants 0 < cp,d ≤ Cd ,p. Consequently, we can find a
reconstructing rank-1 lattice of size M ≤ C̃p,d |I dp,N | using a

component-by-component strategy, where the constant C̃p,d > 0
only depends on p and d .
On the other hand, we obtain for p → 0 the frequency index set
I := {k ∈ Zd : ‖k‖1 = ‖k‖∞ ≤ N} with N ∈ N, which is supported
on the coordinate axes. In this case we have |I | = 2d N + 1, while
we obtain (2N + 1)2 ≤ |D(I )| ≤ d (2N + 1)2. Hence, there exists a
positive constant c̃d ∈ R with c̃d |I |2 ≤ |D(I )| and the theoretical
upper bound on M is quadratic in |I | for each fixed dimension d .
In fact, reconstructing rank-1 lattices for these specific frequency
index sets need at least O(N2) nodes, see [29, Theorem 3.5] and
[28]. 188 / 302



Example 67

Important frequency index sets in higher dimensions d > 2 are
so-called (energy-norm based) hyperbolic crosses, see e.g.
[3, 6, 7, 71]. In particular, we can consider a frequency index set of
the form

I d ,TN :=
{

k ∈ Zd : (max {1, ‖k‖1})T/(T−1)
d∏

s=1

(max {1, |ks |})1/(1−T ) ≤ N
}
,

with parameters T ∈ [0, 1) and N ∈ N, see Figure 4 for

illustration. The frequency index set I d ,0N for T = 0 is a symmetric

hyperbolic cross, and the frequency index set I d ,TN , T ∈ (0, 1), is
called energy-norm based hyperbolic cross.
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Example 67 (continue)

The cardinality of I d ,TN can be estimated by

cd ,0 N (logN)d−1 ≤ |I d ,TN | ≤ Cd ,0 N (logN)d−1 , for T = 0 ,

cd ,T N ≤ |I d ,TN | ≤ Cd ,T N , for T ∈ (0, 1)

with some constants 0 < cd ,T ≤ Cd ,T , depending only on d and
T , see [30, Lemma 2.6]. Since the axis cross is a subset of the
considered frequency index sets, i.e.,
{k ∈ Zd : ‖k‖1 = ‖k‖∞ ≤ N} ⊂ I d ,TN for T ∈ [0, 1), it follows that

(2N + 1)2 ≤ |D(I d ,TN )|. On the other hand, we obtain upper

bounds of the cardinality of the difference set D(I d ,TN ) of the form

|D(I d ,TN )| ≤ C̃d ,0 N
2 (logN)d−2 , for T = 0 ,

|D(I d ,TN )| ≤ |I d ,TN |2 ≤ C 2
d ,T N2 , for T ∈ (0, 1) ,

see e.g. [23, Theorem 4.8].
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Example 67 (continue)

Theorem 64 offers a constructive strategy to find reconstructing
rank-1 lattices for I d ,TN of cardinality M ≤ |D(I d ,TN )|. For
T ∈ (0, 1), these rank-1 lattices are of optimal order in N, see [23,
Lemmata 2.1 and 2.3, and Corollary 2.4] and [24]. Reconstructing
rank-1 lattices for these frequency index sets are discussed in more
detail in [24].

−32 0 32
−32

0

32

I 2,0
32

−32 0 32
−32

0

32

I
2,1/4
32

−32 0 32
−32

0

32

I
2,1/2
32

Figure 4: Two-dimensional frequency index sets I 2,T
32 for T ∈ {0, 1

4 ,
1
2}.

191 / 302



Summarizing, we can construct a reconstructing rank-1 lattice
Λ(z,M, I ) for arbitrary finite frequency index set I . The choice of
the frequency index set I always depends on the approximation
properties of the considered function space. The positive
statement is that the size M of the reconstructing rank-1 lattice
can be always bounded by |I |2 being independent of the dimension
d . However for important index sets, such as the hyperbolic cross
or thinner index sets, the lattice size M is bounded from below by
M ≥ C N2. We overcome this disadvantage in the following by
considering the union of several rank-1 lattices.
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Multiple rank-1 lattices

To overcome the limitations of the single rank-1 lattice approach,
we consider now multiple rank-1 lattices which are obtained by
taking a union of rank-1 lattices. For s rank-1 lattices Λ(zr ,Mr ),
r = 1, . . . , s as given in (51) we call the union

X = Λ(z1,M1, z2,M2, . . . , zs ,Ms) :=
s⋃

r=1

Λ(zr ,Mr )

multiple rank-1 lattice. In order to work with this multiple rank-1
lattices, we need to consider the question, how many distinct
points are contained in X . Assuming that for each r the lattice
size Mr is coprime with at least one component of zr , the single
rank-1 lattice Λ(zr ,Mr ) possesses exactly Mr distinct points in
[0, 2π)d including 0. Consequently, the number of distinct points
in Λ(z1,M1, z2,M2, . . . , zs ,Ms) is bounded from above by

|Λ(z1,M1, z2,M2, . . . , zs ,Ms)| ≤ 1− s +
s∑

r=1

Mr .
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In the special case s = 2, we obtain the following result, see also
[27, Lemma 2.1].

Lemma 68

Let Λ(z1,M1) and Λ(z2,M2) be two rank-1 lattices with coprime
lattice sizes M1 and M2.
Then the multiple rank-1 lattice Λ(z1,M1, z2,M2) is a subset of
the rank-1 lattice Λ(M2z1 + M1z2,M1M2). Furthermore, if the
cardinalities of the single rank-1 lattices Λ(z1,M1) and Λ(z2,M2)
are M1 and M2, then

|Λ(z1,M1, z2,M2)| = M1 + M2 − 1 .
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Proof: 1. We show that Λ(z1,M1) is a subset of
Λ(M2z1 + M1z2,M1M2). Let

xj :=
2π

M1
(j z1 mod M11)

be an arbitrary point of Λ(z1,M1). Since M1 and M2 are coprime,
there exists a k ∈ {0, . . . ,M1 − 1} such that k M2 ≡ j mod M1.
Choose now ` = kM2, then

y` :=
2π

M1M2

(
`(M2z1 + M1z2) mod M1M21

)
is a point of Λ(M2z1 + M1z2,M1M2). Further we find by

` (M2 z1 + M1 z2) mod M1M21 = k (M2
2 z1 + M1M2 z2) mod M1M21

= k M2
2 z1 mod M1M21 = k M2 z1 mod M11 = j z1 mod M11

that xj = y`. Analogously, we conclude that
Λ(z2,M2) ⊂ Λ(M2z1 + M1z2,M1M2).
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2. Now we prove that Λ(z1,M1) ∩ Λ(z2,M2) = {0}. For this
purpose it is sufficient to show that the M1M2 points of
Λ(M2z1 + M1z2,M1M2) are distinct. Suppose that there is an
` ∈ {0, . . . ,M1M2 − 1} such that

` (M2z1 + M1z2) ≡ 0 mod M1M21 .

Then there exist j1, k1 ∈ {0, . . . ,M1 − 1} and j2,
k2 ∈ {0, . . . ,M2− 1} with ` = j2 M1 + j1 = k1 M2 + k2, and we find

` (M2z1 + M1z2) mod M1M21 = j1 M2z1 + k2 M1z2 mod M1M21 .

Thus, we arrive at

j1 M2 z1 ≡ −k2 M1 z2 mod M1M21 .

Since M1 and M2 are coprime, it follows that M1 is a divisor of
each component of j1 z1, and that M2 is a divisor of each
component of −k2 z2. But this can be only true for j1 = k2 = 0,
since we had assumed that Λ(z1,M1) and Λ(z2,M2) have the
cardinalities M1 and M2. This observation implies now
` = j2 M1 = k1 M2 which is only possible for j2 = k1 = 0, since M1

and M2 are coprime. Thus ` = 0, and the assertion is proven.
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Lemma 68 can be simply generalized.

Corollary 69

Let the multiple rank-1 lattice Λ(z1,M1, . . . , zs ,Ms) with pairwise
coprime lattice sizes M1, . . . ,Ms be given. Assume that
|Λ(zr ,Mr )| = Mr for each r = 1, . . . , s.
Then we have

|Λ(z1,M1, . . . , zs ,Ms)| = 1− s +
s∑

r=1

Mr .

Further, let Λ(z,M) be the rank-1 lattice with the generating
vector z and lattice size M given by

z :=
s∑

r=1

( s∏
`=1
` 6=r

M`

)
zr , M :=

s∏
r=1

Mr .

Then
Λ(z1,M1, . . . , zs ,Ms) ⊂ Λ(z,M).
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Proof: The proof follows similarly as for Lemma 68.
As in Section 5 we define now the Fourier matrix for the sampling
set X = Λ(z1,M1, z2,M2, . . . , zs ,Ms) and the frequency index set
I ,

A = A(Λ(z1,M1, z2,M2, . . . , zs ,Ms), I )

:=


(
e2πi j (k·z1)/M1

)
j=0,...,M1−1, k∈I(

e2πi j (k·z2)/M2
)
j=0,...,M2−1, k∈I

...(
e2πi j (k·zs)/Ms

)
j=0,...,Ms−1, k∈I

 , (67)

where we assume that the frequency indices k ∈ I are arranged in a
fixed order. Thus A has

∑s
r=1 Mr rows and |I | columns, where the

first rows of the s partial Fourier matrices coincide.
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We also introduce the reduced Fourier matrix

Ã :=


(
e2πi j (k·z1)/M1

)
j=0,...,M1−1, k∈I(

e2πi j (k·z2)/M2
)
j=1,...,M2−1, k∈I

...(
e2πi j (k·zs)/Ms

)
j=1,...,Ms−1, k∈I

 ,

where we use beside
(
e2πi j (k·z1)/M1

)
j=0,...,M1−1, k∈I only the partial

matrices (
e2πi j (k·zr )/Mr

)
j=1,...,Mr−1, k∈I , r = 2, . . . , s ,

such that Ã has
∑s

r=1 Mr − s + 1 rows and |I | columns. Obviously,

A and Ã have the same rank, since we have only removed
redundant rows.
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As in Section 5, we consider the fast evaluation of trigonometric
polynomials on multiple rank-1 lattices on the one hand and the
evaluation of their Fourier coefficients from samples on multiple
rank-1 lattices on the other hand.

(i) Evaluation of trigonometric polynomials. To evaluate a
trigonometric polynomial at all nodes of a multiple rank-1 lattice
Λ(z1,M1, . . . , zs ,Ms), we can apply the ideas from Section 5 and
compute the trigonometric polynomial on s different rank-1 lattices
Λ(z1,M1), . . . , Λ(zs ,Ms) separately. The corresponding Algorithm
201 applies the known rank-1 Algorithm s-times, once for each
single rank-1 lattice. The arithmetic costs of the fast evaluation at
all nodes of the whole multiple rank-1 lattice Λ(z1,M1, . . . , zs ,Ms)
is therefore O(

∑s
r=1 Mr logMr + s d |I |).
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Evaluation at multiple rank-1 lattices

Input: M1, . . . ,Ms ∈ N lattice sizes of rank-1 lattices Λ(z`,M`),
` = 1, . . . , s,

z1, . . . , zs ∈ Zd generating vectors of Λ(z`,M`),
` = 1, . . . , s,

I ⊂ Zd finite frequency index set,
p̂ = (p̂k)k∈I Fourier coefficients of p ∈ ΠI in (48).

1 For ` = 1, . . . , s do by rank-1 Algorithm

p` := LFFT(M`, z`, I , p̂)

end for

2 Set p :=(
p1(1), . . . ,p1(M1),p2(2), . . . ,p2(M2), . . . ,ps(2), . . .ps(Ms)

)>
.

Output: p = Ã p̂ polynomial values of p ∈ ΠI .
Arithmetic costs: O(

∑s
`=1 M` logM` + s d |I |) .
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The algorithm is a fast realization of the matrix-vector product
with the Fourier matrix Ã in (67). The fast computation of the
matrix-vector product with the adjoint Fourier matrix AH can be
realized by employing rank-1 Algorithm separately to each rank-1
lattice with a numerical effort of O(

∑s
`=1 M` logM` + s d |I |).

(ii) Evaluation of the Fourier coefficients. To solve the inverse
problem, i.e., to compute the Fourier coefficients of an arbitrary
trigonometric polynomial p ∈ ΠI as given in (48), we need to
ensure that our Fourier matrix A in (67)) has full rank |I |. This
means that p needs to be already completely determined by the
sampling set Λ(z1,M1, . . . , zs ,Ms). Then we can apply formula
(50) for reconstruction. We are especially interested in a fast and
stable reconstruction method.
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We define a reconstructing multiple rank-1 lattice to a given
frequency index set I as a multiple rank-1 lattice satisfying that

AHA

with A = A(Λ(z1,M1, z2,M2, . . . , zs ,Ms), I ) has full rank |I |.
In order to keep the needed number of sampling points
|Λ(z1,M1, . . . , zs ,Ms)| =

∑s
r=1 Mr − s + 1 small, we do not longer

assume that each single rank-1 lattice is a reconstructing rank-1
lattice. But still, we can use Lemma 58 in order to compute the
matrix AHA in an efficient way.
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Lemma 70

Let A be the (
∑s

r=1 Mr )-by-|I | Fourier matrix (67) for a frequency
index set |I | and a multiple rank-1 lattice
Λ(z1,M1, z2,M2, . . . , zs ,Ms) with cardinality 1− s +

∑s
r=1 Mr .

Then the entries of AHA ∈ C|I |×|I | have the form

(AHA)h,k =
s∑

r=1

Mrδ(k−h)·zr mod Mr
,

where

δ(k−h)·zr mod Mr
:=

{
1 k · zr ≡ h · zr mod Mr ,
0 k · zr 6≡ h · zr mod Mr .
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Proof: The assertion follows directly from Lemma 58. The entry
(AHA)h,k is the inner product of the kth and the hth column of A.
Thus we find

(AHA)h,k =
s∑

r=1

Mr−1∑
j=0

(
e2πi [(k−h)·zr ]/Mr

)j
,

where the sums
Mr−1∑
j=0

(
e2πi [(k−h)·zr ]/Mr

)j
can be simply computed as in Lemma 58.
Lemma 70 also shows that AHA can be sparse for suitably chosen
rank-1 lattices. If the single rank-1 lattices are already
reconstructing rank-1 lattices, then it directly follows that AHA is
a multiple of the identity matrix.
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Now the question remains, how to choose the parameters s as well
as zr and Mr , r = 1, . . . s, to ensure that AHA indeed possesses
full rank |I |. The following strategy given in Algorithm 207, see
[26, Algorithm 1], yields with high probability such a multiple
rank-1 lattice. Here we take the lattice sizes Mr := M for all
r = 1, . . . , s as a prime number and choose the generating vectors
zr randomly in the set [0, M − 1]d ∩ Zd . In order to determine the
lattice size M large enough for the index set I , we define the
expansion of the frequency set I by

NI := max
j=1,...,d

{max
k∈I

kj −min
l∈I

`j} , (68)

where k = (kj)
d
j=1 and l = (`j)

d
j=1 belong to I . The expansion NI

can be interpreted as the size of a d-dimensional cube we need to
cover the index set I .
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Determining reconstructing multiple rank-1 lattices

Input: T ∈ N upper bound of the cardinality of a frequency set I ,
d ∈ N dimension of the frequency set I ,
N ∈ N upper bound of the expansion NI ,
δ ∈ (0, 1) upper bound of failure probability,
c > 1 minimal oversampling factor.

1 Set c := max
{
c , N

T−1

}
and λ := c (T − 1).

2 Set s := d
(

c
c−1

)2 lnT−ln δ
2 e.

3 Set M = argmin {p > λ : p ∈ N prime}.
4 For r = 1 to s do

choose zr from [0,M − 1]d ∩ Zd uniformly at random
endfor

Output: M lattice size of all rank-1 lattices,
z1, . . . , zs generating vectors of rank-1 lattices such that
Λ(z1,M, . . . , zs ,M) is a reconstructing multiple rank-1
with probability at least 1− δ.

Arithmetical cost: O(λ ln lnλ+ ds) for c > 1, λ ∼ max{T ,N},
and s ∼ lnT − ln δ. 207 / 302



Due to [26, Theorem 3.4] the Algorithm 207 determines a
reconstructing sampling set for trigonometric polynomials
supported on the given frequency set I with probability at least
1− δs , where

δs = T e−2s (c−1)2/c2
(69)

is an upper bound on the probability that the approach fails. There
are several other strategies in the literature to find appropriate
reconstructing multiple rank-1 lattices, see [27, 26, 32]. Finally, if
a reconstructing multiple rank-1 lattice is found, then the Fourier
coefficients of the trigonometric polynomial p ∈ ΠI in (48) can be
efficiently computed by solving the system

AHA p̂ = AHp ,

where p :=
(
p(xj)xj∈Λ(z1,M1), . . . , p(xj)xj∈Λ(zs ,Ms)

)>
.
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Unknown frequency index set I

until now:
• fast reconstruction / approximation from samples

for arbitrary given frequency index set I ⊂ Zd , |I | <∞
next: unknown frequency index set I ⇒ multi-dim. sparse FFT
• task: Determine frequency index set I from samples

belonging to ≈largest Fourier coefficients f̂k or to f̂k 6= 0
• search domain Γ ⊂ Zd , e.g. full grid
Ĝd
N := {−N,−N + 1, . . . ,N}d , N ∈ N

• various existing methods, e.g., based on
• filters [Indyk, Kapralov ’14]

• Chinese Remainder Theorem [Cuyt, Lee ’08] [Iwen ’13]

• Prony’s method [Tasche, P. ’13] [Peter, Plonka, Schaback ’15]

[Kunis, Peter, Römer, von der Ohe ’15]

• problems: non-sparsity, implementations?, stability, many
frequencies

⇒ dimension-incremental sparse FFT based on rank-1 lattices [P.,

Volkmer. ’15] [Volkmer ’17]; (similar basic idea without rank-1 lattices:

([Zippel ’79] [Kaltofen, Lee ’03] [Javadi Monagan ’10] [P., Tasche ’13])
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Dimension incremental reconstruction
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• B-spline Nm(x) :=
∑

k∈Z Cm sinc
(
π
mk
)m

cos(πk) e2πikx ,

‖Nm|L2(T)‖ = 1, |N̂m(k)| ∼ |k|−m

• f (x) :=
∏

t∈{1,3,8}

N2(xt) +
∏

t∈{2,5,6,10}

N4(xt) +
∏

t∈{4,7,9}

N6(xt)

• full grid for N = 64, d = 10: |Ĝ 10
64 | = 12910 ≈ 1.28 · 1021

• symmetric hyperbolic cross: |I 10
64 | = 696 036 321

relative L2(Td)-error (best case) 4.1e-04

• results for dimension incremental algorithm with Γ = Ĝ 10
64

(tests repeated 10 times):

threshold #samples |I | rel. L2-error

1.0e-02 254 530 491 1.4e-01
1.0e-03 2 789 050 1 121 1.1e-02
1.0e-04 17 836 042 3 013 1.7e-03
1.0e-05 82 222 438 7 163 4.7e-04

215 / 302



complexity of dimension-incremental sparse FFT using multiple
rank-1 lattices:

• sparsity s = |I |, search domain Γ = Ĝd
N := {−N, . . . ,N}d ⊃ I ,

number of detection iterations r

• samples: O(d rsN log2(rsN)) (w.h.p.)
instead of O(d r2s2N)

• arithmetic operations: O
(
d2rsN log4(rsN)

)
(w.h.p.)

instead of O(d r3s3 + d r2s2N log(rsN))
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Example: pI (x) =
∑
k∈I

p̂k e2πik·x , I ⊂ Γ = Ĝ 5
32 := {−32, . . . , 32}5,

|Γ|≈1.16·109
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Example:

• B-spline Nm(x) :=
∑

k∈Z Cm sinc
(
π
mk
)m

(−1)k e2πikx

• f (x) :=∏
t∈{1,3,8}N2(xt) +

∏
t∈{2,5,6,10}N4(xt) +

∏
t∈{4,7,9}N6(xt)

• dimension-incremental method for Γ = Ĝ 10
64 :

(|Ĝ 10
64 | ≈ 1.28 · 1021)

single rank-1 lattices multiple rank-1 lattices
rel. rel.

threshold #samples |I | L2 error #samples |I | L2 error
1.0e-02 327 689 493 1.3e-01 246 681 501 5.5e-01
1.0e-03 2 551 143 1 109 1.1e-02 1 441 455 1 205 1.1e-02
1.0e-04 17 198 228 3 009 2.0e-03 7 473 447 3 463 2.1e-03
1.0e-05 132 285 922 7 435 4.8e-04 37 056 491 11 053 4.9e-04
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• multivariate periodic functions and rank-1 lattices
• fast reconstruction of multivariate trigonometric polynomials

pI for arbitrary frequency index sets I [Kämmerer ’14]

• fast approximation [Kämmerer ’14], error estimates in
[Kämmerer ’14], [Volkmer ’17]

• similar results for multivariate non-periodic functions and
rank-1 Chebyshev lattices (not in this talk)

• high-dimensional dimension-incremental sparse FFT and
rank-1 lattices [P., Volkmer ’16] [Volkmer ’17]

• determination of unknown frequency index set I
• very good numerical results for high-dimensional sparse

trigonometric polynomials and for high-dimensional functions
(non-sparse in frequency domain)

• high-dimensional dim.-incremental sparse FFT and multiple
rank-1 lattices

• based on multiple reconstructing rank-1 lattices [Kämmerer ’16]

[Kämmerer ’17]

• distinct reduction of number of samples and arithmetic
operations
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Prony’s method for reconstruction of structured
functions

The recovery of a structured function from noisy sampled data is a
fundamental problem in applied mathematics and signal processing.
In Section 222, we consider the frequency analysis problem, where
the classical Prony method and its relatives are described. Section
240 describes frequently used methods for solving the frequency
analysis problem, namely MUSIC, the approximate Prony method,
and ESPRIT. The algorithms for recovery of exponential sums will
be mainly derived for noiseless data. Fortunately, these methods
work also for noisy data. This important property is based on the
stability of exponentials which will be handled in Section 269.

220 / 302



The reconstruction of a compactly supported function of special
structure from given Fourier data is a common problem in scientific
computing. In Section ?? we present an algorithm for recovery of a
spline function from given samples of its Fourier transform. In
Section ?? we study a phase retrieval problem, i.e., we investigate
the question whether a complex-valued function f can be
reconstructed from the modulus |f̂ | of its Fourier transform.
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Prony method

The following problem arises quite often in electrical engineering,
signal processing, and mathematical physics and is known as
frequency analysis problem (see [47] or [41, Chapter 9]):

Recover the positive integer M, distinct frequencies ϕj ∈ [−π, π) ,
complex coefficients cj 6= 0, j = 1, . . . ,M, in the exponential sum
of order M

h(x) :=
M∑
j=1

cj eiϕjx , x ≥ 0 , (70)

if noisy sampled data hk := h(k) + ek , k = 0, . . . ,N − 1, with
N ≥ 2M are given, where ek ∈ C are small error terms.

In this frequency analysis problem, we have to detect the
significant exponentials of the signal h.
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The classical Prony method works for noiseless sampled data of
the exponential sum (70) in the case of known order M. Following
an idea of G.R. de Prony from 1795 (see [53]), we recover all
parameters of the exponential sum (70), if sampled data

h(k) :=
M∑
j=1

cj eiϕj k =
M∑
j=1

cj z
k
j , k = 0, . . . , 2M − 1 (71)

are given, where zj := eiϕj are distinct points on the unit circle.
We introduce the Prony polynomial

p(z) :=
M∏
j=1

(z − zj) =
M−1∑
k=0

pk z
k + zM , z ∈ C , (72)

with corresponding coefficients pk ∈ C.
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Further we define the companion matrix CM(p) ∈ CM×M of the
Prony polynomial (72) by

CM(p) :=


0 0 . . . 0 −p0

1 0 . . . 0 −p1

0 1 . . . 0 −p2
...

...
...

...
0 0 . . . 1 −pM−1

 . (73)

It is known that the companion matrix CM(p) has the property

det
(
z IM − CM(p)

)
= p(z) ,

where IM ∈ CM×M denotes the identity matrix. Hence the zeros of
the Prony polynomial (72) coincide with the eigenvalues of the
companion matrix CM(p).
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Setting pM := 1, we observe the following relation for all m ∈ N0,

M∑
k=0

pk h(k + m)

=
M∑
k=0

pk

( M∑
j=1

cj z
k+m
j

)

=
M∑
j=1

cj z
m
j

( M∑
k=0

pk z
k
j

)
=

M∑
j=1

cj z
m
j p(zj) = 0 . (74)

Using the known values h(k), k = 0, . . . , 2M − 1, the formula (74)
implies that the homogeneous linear difference equation

M−1∑
k=0

pk h(k + m) = −h(M + m) , m = 0, . . . ,M − 1 (75)

is fulfilled.
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In matrix-vector notation, we obtain the linear system

HM(0)
(
pk
)M−1

k=0
= −

(
h(M + m)

)M−1

m=0
(76)

with the square Hankel matrix

HM(0) :=


h(0) h(1) . . . h(M − 1)
h(1) h(2) . . . h(M)

...
...

...
h(M − 1) h(M) . . . h(2M − 2)

 =
(
h(k+m)

)M−1

k,m=0
.

(77)
The matrix HM(0) is invertible, since by the special structure (71)
of the values h(k) we have the factorization

HM(0) = VM(z)
(
diag c

)
VM(z)> ,

where the diagonal matrix diag c with c := (cj)
M
j=1 contains the

nonzero coefficients of (70) in the main diagonal, and where
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VM(z) :=
(
z j−1
k

)M
j ,k=1

=


1 1 . . . 1
z1 z2 . . . zM
...

...
...

zM−1
1 zM−1

2 . . . zM−1
M


denotes the Vandermonde matrix generated by the vector
z := (zj)

M
j=1. Since all zj , j = 1, . . . ,M, are distinct, the

Vandermonde matrix VM(z) is invertible. Note that by (71) we
have

VM(z) c =
(
h(k)

)M−1

k=0
. (78)

We summarize:
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Classical Prony method

Input: M ∈ N, sampled values h(k), k = 0, . . . , 2M − 1.

1. Solve the linear system (76).
2. Compute all zeros z̃j ∈ C, j = 1, . . . ,M, of the Prony
polynomial (72), i.e., calculate all eigenvalues z̃j of the associated
companion matrix (73). For zj := z̃j/|z̃j | and form
ϕj := Im(log zj) ∈ [−π, π), j = 1, . . . ,M, where log is the
principal value of the complex logarithm.
3. Solve the Vandermonde system (78).

Output: ϕj ∈ [−π, π), cj ∈ C, j = 1, . . . ,M.
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As shown, Prony’s idea is mainly based on the separation of the
unknown frequencies ϕj from the unknown coefficients cj . But the
main problem is the determination of ϕj , since the coefficients cj
are uniquely determined by the linear system (78).

Remark 71

For simplicity, we consider only an undamped exponential sum
(70). Analogously, one can handle a damped exponential sum

h(x) :=
M∑
j=1

cj efjx , x ≥ 0 ,

where cj 6= 0 and fj ∈ [−α, 0] + i [−π, π) are distinct numbers
with small α > 0 (see [49]). Then the negative real part of fj is the
damping factor and the imaginary part of fj is the angular
frequency of the exponential efjx .
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Remark 72

The Prony method can be also applied to the recovery of an
extended exponential sum

h(x) :=
m∑
j=1

cj(x) eiϕjx , x ≥ 0 ,

where cj are polynomials of low degree. For simplicity, we sketch
only the case of linear polynomials cj(x) = cj ,0 + cj ,1x . With
distinct zj = eiϕj , j = 1, . . . ,M, the corresponding Prony
polynomial reads as follows

p(z) :=
M∏
j=1

(z − zj)
2 =

2M−1∑
k=0

pk z
k + z2M . (79)
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Remark 72 (continue)

Assuming that the sampled values h(k), k = 0, . . . , 4M − 1, are
given, one has to solve the linear system

2M−1∑
k=0

pk h(k + `) = −h(2M + `) , ` = 0, . . . , 2M − 1 ,

and to compute all double zeros zj of corresponding Prony
polynomial (79), i.e., all double eigenvalues of the related
companion matrix.
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Remark 72 (continue)

Introducing the confluent Vandermonde matrix

Vc
2M(z) :=


1 0 . . . 1 0
z1 1 . . . zM 1
z2

1 2z1 . . . z2
M 2zM

...
...

...
...

z2M−1
1 (2M − 1)z2M−2

1 . . . z2M−1
M (2M − 1)z2M−2

M

 ,

finally one has to solve the confluent Vandermonde system

Vc
2M(z) (c0,1, z1c1,1, . . . , cM,0, z1cM,1)> =

(
h(k)

)2M−1

k=0
.
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Remark 73

The Prony method is closely related to Padé approximation (see
[67]). Let (fk)k∈N0 be a complex sequence with
ρ := lim supk→∞ |fk |1/k <∞. The z-transform of such a sequence
is the Laurent series

∑∞
k=0 fk z

−k which converges in the
neighborhood {z ∈ C : |z | > ρ} of z =∞. Thus the z-transform
of each sequence (zkj )k∈N0 with zj = eiϕj is equal to z

z−zj ,

j = 1, . . . ,M. Since the z-transform is linear, the z-transform
maps the data sequence

(
h(k)

)
k∈N0

with (71) for all k ∈ N0 into
the rational function

∞∑
k=0

h(k) z−k =
M∑
j=1

cj
z

z − zj
=

a(z)

p(z)
, (80)

where p is the Prony polynomial (72) and
a(z) := aM zM + . . .+ a1 z . Now we substitute z for z−1 in (80)
and form the reverse Prony polynomial rev p(z) := zM p(z−1) of
degree M with rev p(0) = 1 as well as the reverse polynomial
rev a(z) := zM a(z−1) of degree at least M − 1.
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Remark 73 (continue)

Then we obtain that

∞∑
k=0

h(k) zk =
rev a(z)

rev p(z)
(81)

in a certain neighborhood of z = 0. In other words, the rational
function on the right side of (81) is an (M − 1,M) Padé
approximant of the power series

∑∞
k=0 h(k) zk with vanishing

O(zM) term and it holds

( ∞∑
k=0

h(k) zk
)

rev p(z) = rev a(z)

in a neighborhood of z = 0.
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Remark 73 (continue)

Equating the coefficients of like powers of z yields

M∑
k=M−m

pk h(k + m −M) = aM−m , m = 0, . . . ,M − 1 ,

M∑
k=0

pk h(k + m) = 0 , m ∈ N0 . (82)

Now the equations (82) for m = 0, . . . ,M − 1 coincide with (75).
Hence the Prony method may also be regarded as a Padé
approximation.
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Remark 74

In signal processing, the Prony method is also known as the
annihilating filter method, see e.g. [65]. For distinct zj = eiϕj and
complex coefficients cj 6= 0, j = 1, . . . ,M, we consider the discrete
signal h =

(
hn
)
n∈Z with

hn :=
M∑
j=1

cj z
n
j , n ∈ Z . (83)

For simplicity, we assume that M is known. Then a discrete signal
a = (an)n∈Z is called an annihilating filter of the signal h, if the
discrete convolution of the signals a and h vanishes, i.e.

(a ∗ h)n :=
∑
`∈Z

a` hn−` = 0 , n ∈ Z .
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Remark 74 (continue)

For the construction of an annihilating filter a we consider

a(z) :=
M∏
j=1

(
1− zj z

−1
)

=
M∑
n=0

an z
−n , z ∈ C \ {0} ,

then a = (an)n∈Z with an = 0, n ∈ Z \ {0, . . . , M} is an
annihilating filter of h in (83). Note that a(z) is the z-transform of
the annihilating filter a. Furthermore, a(z) and the Prony
polynomial (72) have the same zeros zj ∈ D, j = 1, . . . ,M, since
zM a(z) = p(z) for all z ∈ C \ {0}. Hence the Prony method and
the method of annihilating filters are equivalent. For details see
e.g. [65].

237 / 302



Remark 75

Prony methods arise also from problems of science and engineering,
where one is interested in predicting future information from
previous ones using a linear model. Let h = (hn)n∈N0 be a discrete
signal. The linear prediction method, see e.g. [5], aims at finding
suitable predictor parameters pj ∈ C such that the signal value
h`+M can be expressed as a linear combination of the previous
signal values hj , j = `, . . . , `+ M − 1, i.e.

h`+M =
M−1∑
j=0

(−pj) h`+j , ` ∈ N0 .

Therefore these equations are also called linear prediction
equations. Setting pM := 1, we observe that this representation is
equivalent to the homogeneous linear difference equation (75).
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Remark 75 (continue)

Assuming that

hk =
M∑
j=1

cj z
k
j , k ∈ N0 ,

we obtain the frequency analysis problem, i.e., the Prony
polynomial (72) coincides with the negative value of the forward
predictor polynomial. The associated companion matrix CM(p) in
(73) is hence equal to the forward predictor matrix. Thus the linear
prediction method can also be considered as a Prony method.

Unfortunately, the classical Prony method has some numerical
drawbacks. Often the order M of the exponential sum (70) is
unknown. Further the classical Prony method is known to perform
poorly when noisy sampled data are given, since the Hankel matrix
HM(0) as well as the Vandermonde matrix VM(z) are usually
badly conditioned. We will see that one can attenuate these
problems by using more sampled data. But then one has to deal
with rectangular matrices.
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Recovery of exponential sums

In this section, we present three efficient algorithms for solving the
frequency analysis problem. Let N ∈ N with N ≥ 2M be given,
where M ∈ N denotes the (unknown) order of the exponential sum
(70). We introduce the nonequispaced Fourier matrix, see Chapter
??,

A>N,M :=
(
eiϕj (k−1)

)N,M
k, j=1

.

Note that A>N,M coincides with the rectangular Vandermonde
matrix

VN,M(z) :=
(
zk−1
j

)N,M
k, j=1

with the vector z := (zj)
M
j=1, where zj = eiϕj , j = 1, . . . ,M, are

distinct nodes on the unit circle. Then the frequency analysis
problem can be formulated in following matrix-vector form

VN,M(z) c =
(
hk
)N−1

k=0
, (84)

where c = (cj)
M
j=1 is the vector of complex coefficients of (70).
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In practice, the order M of the exponential sum (70) is often
unknown. Assume L ∈ N is a convenient upper bound of M and
M ≤ L ≤ N −M + 1. In applications, such an upper bound L of M
is mostly known a priori. If this is not the case, then one can
choose L ≈ N

2 . Later we will see that the choice L ≈ N
2 is optimal

in some sense. Often the sequence {h0, h1, . . . , hN−1} of (noisy)
sampled data is called a time series of length N. Then we form the
L-trajectory matrix of this time series

HL,N−L+1 :=
(
h`+m

)L−1,N−L
`,m=0

∈ CL×(N−L+1) (85)

with the window length L ∈ {M, . . . ,N −M + 1}. Obviously
HL,N−L+1 is a rectangular Hankel matrix.
For simplicity, we consider mainly noiseless data hk = h(k),
k = 0, . . . ,N − 1, i.e.

HL,N−L+1 =
(
h(`+ m)

)L−1,N−L
`,m=0

∈ CL×(N−L+1) . (86)
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The main step in the solution of the frequency analysis problem is
the determination of the order M and the computation of the
frequencies ϕj or alternatively of the nodes zj = eiϕj , j = 1, . . . ,M.
Afterwards one can calculate the coefficient vector c ∈ CM as least
squares solution of the overdetermined linear system (84), i.e., the
coefficient vector c is the solution of the least squares problem

min
c∈CM

‖VN,M(z) c−
(
hk
)N−1

k=0
‖2 .

By (71) the L-trajectory matrix (86) can be factorized in the
following form

HL,N−L+1 = VL,M(z) (diag c) VN−L+1,M(z)> . (87)

We denote square matrices with only one index.
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Additionally we introduce the rectangular Hankel matrices

HL,N−L(s) := HL,N−L+1(1 : L, 1 + s : N − L + s) (88)

=
(
hs+`+m

)L−1,N−L−1

`,m=0
, s ∈ {0, 1} ,

for L ∈ {M, . . . ,N −M}. Here we use the known submatrix
notation. For example, HL,N−L+1(1 : L, 1 : N − L) is the submatrix
of HL,N−L+1 obtained by extracting rows 1 through L and columns
1 through N − L. Observe that the first row or column of a matrix
can be indexed by zero.

Lemma 76

Let N ≥ 2M be given. For each window length
L ∈ {M, . . . , N −M + 1}, the rank of the L-trajectory matrix (86)
of noiseless data is M. The related Hankel matrices HL,N−L(s),
s ∈ {0, 1}, possess the same rank M for each window length
L ∈ {M, . . . , N −M}.
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Proof: 1. As known, the square Vandermonde matrix VM(z) is
invertible. Further we have

rank VL,M(z) = M , L ∈ {M, . . . , N −M + 1} , (89)

since rank VL,M(z) ≤ min {L, M} = M and since the submatrix(
z j−1
k

)M
j ,k=1

of VL,M(z) is invertible.

For L ∈ {M, . . . , N −M + 1}, we see by (89) that

rank VL,M(z) = rank VN−L+1,M(z) = M .

Thus the rank of the matrix (diag c) VN−L+1,M(z)> is equal to M.
Hence we conclude that

rank HL,N−L+1 = rank
(

VL,M(z)
(
(diag c) VN−L+1,M(z)>

))
= rank VL,M(z) = M .

Note that this proof is mainly based on the factorization (87).
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2. From HL,N−L(0) = HL,N−L it follows by step 1 that
rank HL,N−L(0) = M for each L ∈ {M, . . . ,N −M}. The Hankel
matrix HL,N−L(1) has also the rank M for each
L ∈ {M, . . . ,N −M}. This follows from the fact that HL,N−L(1)
can be factorized in a similar form as (87), namely

HL,N−L(1) = VL,M(z) (diag c) (diag z) VN−L,M(z)> .

Consequently, the order M of the exponential sum (70) coincides
with the rank of the Hankel matrices (86) and (88).
The ranges of HL,N−L+1 and VL,M(z) coincide in the noiseless case
with M ≤ L ≤ N −M + 1 by (87). If L > M, then the range of
VL,M(z) is a proper subspace of CL. This subspace is called signal
space SL. The signal space SL is of dimension M and is generated
by the M columns eL(ϕj), j = 1, . . . ,M, where

eL(ϕ) :=
(
ei `ϕ

)L−1

`=0
, ϕ ∈ [−π, π) .

Note that ‖eL(ϕ)‖2 =
√
L for each ϕ ∈ [−π, π).
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The noise space NL is defined as the orthogonal complement of SL
in CL. The dimension of NL is equal to L−M.
By QL we denote the orthogonal projection of CL onto the left
noise space NL. Since eL(ϕj) ∈ SL, j = 1, . . . ,M, and NL ⊥ SL,
we obtain that

QL eL(ϕj) = 0 , j = 1, . . . ,M .

For ϕ ∈ [−π, π) \ {ϕ1, . . . , ϕM}, the vectors
eL(ϕ1), . . . , eL(ϕM), eL(ϕ) ∈ CL are linearly independent, since
the square Vandermonde matrix(

eL(ϕ1) | . . . | eL(ϕM) | eL(ϕ)
)
(1 : M + 1, 1 : M + 1)

is invertible for each L ≥ M + 1. Hence
eL(ϕ) /∈ SL = span {eL(ϕ1), . . . , eL(ϕM)}, i.e., QLeL(ϕ) 6= 0.
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Thus the frequencies ϕj can be determined via the zeros of the
noise-space correlation function

NL(ϕ) :=
1√
L
‖QL eL(ϕ)‖2 , ϕ ∈ [−π, π) ,

since NL(ϕj) = 0 for each j = 1, . . . ,M and 0 < NL(ϕ) ≤ 1 for all
ϕ ∈ [−π, π) \ {ϕ1, . . . , ϕM}, where QLeL(ϕ) can be computed on
a fine equispaced grid of [−π, π). Alternatively, one can seek the
peaks of the imaging function

JL(ϕ) :=
√
L ‖QL eL(ϕ)‖−1

2 , ϕ ∈ [−π, π) .

In this approach, we prefer the zeros or rather the lowest local
minima of the noise-space correlation function NL(ϕ).
In the next step we determine the orthogonal projection QL of CL

onto the noise space NL.
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Here we use the singular value decomposition (SVD) the
L-trajectory matrix HL,N−L+1, i.e.,

HL,N−L+1 = UL DL,N−L+1 WH
N−L+1 , (90)

where

UL =
(
u1 | . . . |uL

)
∈ CL×L ,

WN−L+1 =
(
w1 | . . . |wN−L+1

)
∈ C(N−L+1)×(N−L+1)

are unitary and where

DL,N−L+1 = diag
(
σ1, . . . , σmin {L,N−L+1}

)
∈ RL×(N−L+1)

is a rectangular diagonal matrix. The diagonal entries of DL,N−L+1

are arranged in nonincreasing order

σ1 ≥ . . . ≥ σM > σM+1 = . . . = σmin {L,N−L+1} = 0 .

The columns of UL are the left singular vectors of HL,N−L+1, the
columns of WN−L+1 are the right singular vectors of HL,N−L+1.
The nonnegative numbers σk are called singular values of
HL,N−L+1.
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The rank of HL,N−L+1 is equal to the number of positive singular
values. Thus we can determine the order M of the exponential
sum (70) by the number of positive singular values σj .
From (90) it follows that

HL,N−L+1 WN−L+1 = UL DL,N−L+1 ,

HH
L,N−L+1 UL = WN−L+1 D>L,N−L+1 .

Comparing the columns in above equations, for each
k = 1, . . . ,min {L, N − L + 1} we obtain

HL,N−L+1 wk = σk uk , HH
L,N−L+1 uk = σk wk .

Introducing the matrices

U
(1)
L,M := UL(1 : L, 1 : M) =

(
u1 | . . . |uM

)
∈ CL×M ,

U
(2)
L,L−M := UL(1 : L, M + 1 : L) =

(
uM+1 | . . . |uL

)
∈ CL×(L−M) ,

we see that the columns of U
(1)
L,M form an orthonormal basis of SL

and that the columns of U
(2)
L,L−M are an orthonormal basis of NL.
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Hence the orthogonal projection onto the noise space NL has the
form

QL = U
(2)
L,L−M (U

(2)
L,L−M)H .

Consequently, we obtain that

‖QL eL(ϕ)‖2
2

= 〈QL eL(ϕ), QL eL(ϕ)〉 = 〈(QL)2 eL(ϕ), eL(ϕ)〉
= 〈QL eL(ϕ), eL(ϕ)〉 = 〈U(2)

L,L−M (U
(2)
L,L−M)H eL(ϕ), eL(ϕ)〉

= 〈(U
(2)
L,L−M)H eL(ϕ), (U

(2)
L,L−M)H eL(ϕ)〉 = ‖(U

(2)
L,L−M)H eL(ϕ)‖2

2 .

Hence the noise-space correlation function can be represented by

NL(ϕ) =
1√
L
‖(U

(2)
L,L−M)H eL(ϕ)‖2

=
1√
L

( L∑
k=M+1

|uH
k eL(ϕ)|2

)1/2
, ϕ ∈ [−π, π) .

In MUSIC, one determines the lowest local minima of the left
noise-space correlation function, see e.g. [57, 41, 11, 33].
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MUSIC via SVD

Input: N ∈ N with N ≥ 2M, L ≈ N
2 window length,

h̃k = h(k) + ek ∈ C, k = 0, . . . ,N − 1, noisy sampled values of
(70), 0 < ε� 1 tolerance.

1. Compute the singular value decomposition

HL,N−L+1 = ŨL D̃L,N−L+1 W̃H
N−L+1

of the rectangular Hankel matrix (85), where the singular values σ̃`
are arranged in nonincreasing order. Determine the numerical rank
M of (85) such that σ̃M ≥ ε σ̃1 and σ̃M+1 < εσ̃1. Form the matrix

Ũ
(2)
L,L−M = ŨL(1 : L, M + 1 : L) =

(
ũM+1 | . . . | ũL

)
.

2. Calculate the squared noise-space correlation function

ÑL(ϕ)2 :=
1

L

L∑
k=M+1

|ũH
k eL(ϕ)|2

on the equispaced grid { (2k−S)π
S : k = 0, . . . ,S − 1} for sufficiently

large S ∈ N by fast Fourier transforms.
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3. The M lowest local minima of ÑL( (2k−S)π
S ), k = 0, . . . ,S − 1,

form the frequencies ϕ̃1, . . . , ϕ̃M . Set z̃j := ei ϕ̃j , j = 1, . . . ,M.
4. Compute the coefficient vector c̃ := (c̃j)

M
j=1 ∈ CM as solution of

the least squares problem

min
c̃∈CM

‖VN,M(z̃) c̃−
(
h̃k
)N−1

k=0
‖2 ,

where z̃ :=
(
z̃j
)M
j=1

denotes the vector of computed nodes.

Output: M ∈ N, ϕ̃j ∈ [−π, π), c̃j ∈ C, j = 1, . . . ,M.
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The approximate Prony method can be immediately derived from
the MUSIC method. We start with the squared noise-space
correlation function

NL(ϕ)2 =
1

L
‖(U

(2)
L,L−M)H eL(ϕ)‖2

2

=
1

L

L∑
k=M+1

∣∣uH
k eL(ϕ)

∣∣2 , ϕ ∈ [−π, π) .

For noiseless data, all frequencies ϕj , j = 1, . . . ,M, are zeros of
NL(ϕ)2 and hence especially zeros of∣∣uH

L eL(ϕ)
∣∣2 .

Thus we obtain uH
L eL(ϕj) = 0 for j = 1, . . . ,M. Note that

uH
L eL(ϕ) can have additional zeros. For noisy data we observe

small values
∣∣uH

L eL(ϕ)
∣∣2 near ϕj . Finally we determine the order

M of the exponential sum (70) by the number of sufficiently large
coefficients in the reconstructed exponential sum.
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Approximate Prony method

Input: N ∈ N with N ≥ 2M, L ≈ N
2 window length,

h̃k = h(k) + ek ∈ C, k = 0, . . . ,N − 1, noisy sampled values of
(70), ε > 0 lower bound with |cj | ≥ 2 ε, j = 1, . . . ,M.

1. Compute the singular vector uL = (u`)
L−1
`=0 ∈ CL of the

rectangular Hankel matrix (85).
2. Calculate

uH
L eL(ϕ) =

L−1∑
`=0

ū` ei `ϕ

on the equispaced grid { (2k−S)π
S : k = 0, . . . ,S − 1} for sufficiently

large S ∈ N by FFT.
3. Determine the lowest local minima ψj , j = 1, . . . , M̃, of

|u∗L eL( (2k−S)π
S )|2, k = 0, . . . ,S − 1. Set w̃j := eiψ̃j , j = 1, . . . , M̃.
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4. Compute the coefficients d̃j ∈ C as least squares solution of the
overdetermined linear system

M̃∑
j=1

d̃j w̃j = hk , k = 0, . . . ,N − 1 .

Delete all the w̃k with |d̃k | ≤ ε and denote the remaining nodes by
z̃j , j = 1, . . . ,M.
5. Compute the coefficients c̃j ∈ C as least squares solution of the
overdetermined linear system

M∑
j=1

c̃j z̃j = hk , k = 0, . . . ,N − 1 .

Output: M ∈ N, ϕ̃j ∈ [−π, π), c̃j ∈ C, j = 1, . . . ,M.
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Finally we sketch the frequently used ESPRIT method (see
[54, 50]) which is based on singular value decomposition of the
rectangular Hankel matrix. First we assume that noiseless data
h̃k = h(k), k = 0, . . . , N − 1, of (70) are given. The set of all
matrices of the form

z HL,N−L(0)−HL,N−L(1) , z ∈ C , (91)

is called a rectangular matrix pencil. If a scalar z0 ∈ C and a
nonzero vector v ∈ CN−L satisfy

z0 HL,N−L(0) v = HL,N−L(1) v ,

then z0 is called an eigenvalue of the matrix pencil and v is called
eigenvector. Note that a rectangular matrix pencil may not have
eigenvalues in general. The ESPRIT method is based on following
result:
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Lemma 77

Assume that N ∈ N with N ≥ 2M and L ∈ {M, . . . ,N −M} are
given. In the case of noiseless data, the matrix pencil (91) has the
nodes zj = eiϕj , j = 1, . . . ,M, as eigenvalues. Further, zero is an
eigenvalue of (91) with N − L−M linearly independent
eigenvectors.

Proof:
1. Let p denote the Prony polynomial (72) and let
q(z) := zN−L−M p(z). Then the companion matrix of q reads as
follows

CN−L(q) =
(
e1 | e2 | . . . | eN−L−1 | − q

)
with q :=

(
0, . . . , 0, p0, p1, . . . , pM−1

)>
, where pk are the

coefficients of (72). Here ek = (δk−`)
N−L−1
`=0 denote the canonical

basis vectors of CN−L. By (74) and (88) we obtain that

HL,N−L(0) q = −
(
h(`)

)N−1

`=N−L

and hence
HL,N−L(0) CN−L(q) = HL,N−L(1) . (92)
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2. Thus it follows by (92) that the rectangular matrix pencil (91)
coincides with the square matrix pencil z IN−L − CN−L(q) up to a
matrix factor,

z HL,N−L(0)−HL,N−L(1) = HL,N−L(0)
(
z IN−L − CN−L(q)

)
.

Now we have to determine the eigenvalues of the companion
matrix CN−L(q). By

det
(
z IN−L − CN−L(q)

)
= q(z) = zN−L−M

M∏
j=1

(z − zj)

the eigenvalues of CN−L(q) are zero and zj , j = 1, . . . ,M.
Obviously, z = 0 is an eigenvalue of the rectangular matrix pencil
(91), which has L−M linearly independent eigenvectors, since
rank HL,N−L(0) = M by Lemma 76. For each z = zj , j = 1, . . . ,M,
we can compute an eigenvector v = (vk)N−L−1

k=0 of CN−L(q), if we
set vN−L−1 = zj .
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Thus we obtain(
zj HL,N−L(0)−HL,N−L(1)

)
v = 0 .

We have shown that the generalized eigenvalue problem of the
rectangular matrix pencil (91) can be reduced to the classical
eigenvalue problem of the square matrix CN−L(q).
We start the ESPRIT method by the singular value decomposition
(90) of the L-trajectory matrix HL,N−L+1 with a window length
L ∈ {M, . . . ,N −M}. Introducing the matrices

UL,M := UL(1 : L, 1 : M) , WN−L+1,M := WN−L+1(1 : N−L+1, 1 : M)

with orthonormal columns as well as the diagonal matrix
DM := diag (σj)

M
j=1, we obtain the partial singular value

decomposition of the matrix (86) with noiseless entries, i.e.,

HL,N−L+1 = UL,M DM WH
N−L+1,M .

259 / 302



Setting

WN−L,M(s) := WN−L+1,M(1 + s : N − L+ s, 1 : M) , s ∈ {0, 1} ,
(93)

it follows by (93) and (88) that both Hankel matrices (88) can be
simultaneously factorized in the form

HL,N−L(s) = UL,M DM WN−L,M(s)H , s ∈ {0, 1} . (94)

Since UL,M has orthonormal columns and since DM is invertible,
the generalized eigenvalue problem of the matrix pencil

z WN−L,M(0)H −WN−L,M(1)H , z ∈ C , (95)

has the same non-zero eigenvalues zj , j = 1, . . . ,M, as the matrix
pencil (91) except for additional zero eigenvalues. Finally we
determine the nodes zj , j = 1, . . . ,M, as eigenvalues of the matrix

FSVD
M := WN−L,M(1)H

(
WN−L,M(0)H

)+ ∈ CM×M , (96)

where
(
WN−L,M(0)H

)+
denote the Moore–Penrose pseudoinverse.
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Analogously, we can handle the general case of noisy data
h̃k = h(k) + ek ∈ C, k = 0, . . . ,N − 1, with small error terms
ek ∈ C, where |ek | ≤ ε1 and 0 < ε1 � 1. For the Hankel matrix
(90) with the singular values σ̃1 ≥ . . . ≥ σ̃min {L,N−L+1} ≥ 0, we
can calculate the numerical rank M of (85) by the property
σ̃M ≥ ε σ̃1 and σ̃M+1 < ε σ̃1 with convenient chosen tolerance ε.
Using the IEEE double precision arithmetic, one can choose
ε = 10−10 for given noiseless data. In the case of noisy data, one
has to use a larger tolerance ε > 0.
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For the rectangular Hankel matrix (85) with noisy entries, we use
its singular value decomposition

HL,N−L+1 = ŨL D̃L,N−L+1 W̃H
N−L+1

and define as above the matrices ŨL,M , D̃M := diag
(
σ̃j
)M
j=1

, and

W̃N−L+1,M . Then
ŨL,M D̃M W̃H

N−L+1,M

is a low-rank approximation of (85). Analogously to (93) and (96),
we introduce corresponding matrices W̃N−L,M(s), s ∈ {0, 1} and
F̃SVD
M . Note that

K̃L,N−L(s) := ŨL,M D̃M W̃N−L,M(s)∗ , s ∈ {0, 1} (97)

is a low-rank approximation of H̃L,N−L(s). Thus the SVD-based
ESPRIT algorithm reads as follows:
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ESPRIT via SVD

Input: N ∈ N with N � 1, M ≤ L ≤ N −M, L ≈ N
2 , M unknown

order of (70)), hk = h(k) + ek ∈ C, k = 0, . . . ,N − 1, noisy
sampled values of (70), 0 < ε� 1 tolerance.

1. Compute the singular value decomposition of the rectangular
Hankel matrix (85). Determine the numerical rank M of (85) such
that σ̃M ≥ ε σ̃1 and σ̃M+1 < εσ̃1. Form the matrices W̃N−L,M(s),
s ∈ {0, 1}, as in (93).
2. Calculate the square matrix F̃SVD

M as in (96) and compute all
eigenvalues z̃j , j = 1, . . . ,M, of F̃SVD

M . Replace z̃j by the corrected

value
z̃j
|z̃j | , j = 1, . . . ,M, and set ϕ̃j := log z̃j , j = 1, . . . ,M,

where log denotes the principal value of the complex logarithm.
3. Compute the coefficient vector c̃ := (c̃j)

M
j=1 ∈ CM as solution of

the least squares problem

‖VN,M(z̃) c̃−
(
h̃k
)N−1

k=0
‖2 = min ,

where z̃ :=
(
z̃j
)M
j=1

denotes the vector of computed nodes.

Output: M ∈ N, ϕ̃j ∈ [−π, π), c̃j ∈ C for j = 1, . . . ,M. 263 / 302



Remark 78

One can pass on the computation of the Moore–Penrose
pseudoinverse in (96). Then the second step of Algorithm 263
reads as follows (see [51, Algorithm 3.1]):

2′. Calculate the matrix products

ÃM := W̃N−L,M(0)H W̃N−L,M(0) , B̃M := W̃N−L,M(1)H W̃N−L,M(0)

and compute all eigenvalues z̃j , j = 1, . . . ,M, of the square matrix
pencil z ÃM − B̃M , z ∈ C, by the QZ–Algorithm (see [13,
pp. 384–385]). Set ϕ̃j := log z̃j , j = 1, . . . ,M.
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Remark 79

For various numerical examples as well as for a comparison
between Algorithm 263 and another Prony–like method see [48].
The Algorithm 263 is very similar to the Algorithm 3.2 in [51].
Note that one can also use the QR decomposition of the
rectangular Hankel matrix (85) instead of the singular value
decomposition. In that case one obtains an algorithm that is
similar to the matrix pencil method [21, 55], see also Algorithm 3.1
in [51]. The matrix pencil method has been also applied to
reconstruction of shapes from moments, see e.g. [12].
In [4, 52], the condition number of a rectangular Vandermonde
matrix is estimated. It is shown that this matrix is well
conditioned, provided the nodes zj are not extremely close to each
other and provided N is large enough.
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Remark 80

The given data sequence {h0, h1, . . . , hN−1} can be also
interpreted as time series. A powerful tool of time series analysis is
the singular spectrum analysis (see [14, 15]). Similarly as step 1 of
the Algorithm 263, this technique is based on the singular value
decomposition of a rectangular Hankel matrix constructed upon
the given time series hk . By this method, the original time series
can be decomposed into a sum of interpretable components such
as trend, oscillatory components, and noise. For further details and
numerous applications see [14, 15].
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Remark 81

The considered Prony-like method can also be interpreted as a
model reduction based on low-rank approximation of Hankel
matrices, see [42]. The structured low-rank approximation problem
reads as follows: For a given structure specification
S : CK → CL×N with L < N, a parameter vector h ∈ CK and an
integer M with 0 < M < L, find a vector

ĥ∗ = arg min {‖h− ĥ‖ : ĥ ∈ CK with rankS(ĥ) ≤ M} ,

where ‖ · ‖ denotes a suitable norm in CK .
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Remark 81 (continue)

In the special case of a Hankel matrix structure, the Hankel matrix
S(h) = (h`+k)L−1,N−1

`, k=0 is rank-deficient of order M if there exists a

nonzero vector p = (pk)M−1
k=0 so that

M−1∑
k=0

pk h(m + k) = −h(M + m)

for all m = 0, . . . ,N + L−M − 1. Equivalently, the values h(k)
can be interpreted as function values of an exponential sum of
order M in (70). The special kernel structure of rank-deficient
Hankel matrices can already be found in [18].
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Stability of exponentials

The three methods for recovery of exponential sums, namely
MUSIC, approximate Prony method, and ESPRIT, were derived for
noiseless data. Fortunately, these methods work also for noisy data
hk = h(k) + ek , k = 0, . . . ,N − 1, with error terms ek ∈ C
provided that the bound ε1 > 0 of all |ek | is small enough. This
property is based on the perturbation theory of a singular value
decomposition of a rectangular Hankel matrix. Here we have to
assume that the frequencies ϕj ∈ [−π, π), j = 1, . . . ,M, are not
too close to each other, that the number N of samples is
sufficiently large with N ≥ 2M, and that the window length
L ≈ N

2 . We start with following stability result, see [22], [70, pp.
162–164] or [34, pp. 59 - 66].
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Lemma 82

Let M ∈ N and T > 0 be given. If the ordered frequencies ϕj ∈ R,
j = 1, . . . ,M, fulfill the gap condition

ϕj+1 − ϕj ≥ q >
π

T
, j = 1, . . . ,M − 1 , (98)

then the exponentials eiϕj ·, j = 1, . . . ,M, are Riesz stable in
L2[0, 2T ], i.e., for all vectors c = (cj)

M
j=1 ∈ CM it holds the

Ingham inequalities

α(T ) ‖c‖2
2 ≤ ‖

M∑
j=1

cj eiϕj ·‖2
L2[0, 2T ] ≤ β(T ) ‖c‖2

2 (99)

with positive constants

α(T ) := 2
π

(
1− π2

T 2q2

)
, β(T ) := 4

√
2

π

(
1 + π2

4T 2q2

)
and the norm

‖f ‖L2[0,2T ] :=
(

1
2T

∫ 2T
0 |f (t)|2 dt

)1/2
, f ∈ L2[0, 2T ] .
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Proof: 1. Let

h(x) :=
M∑
j=1

cj eiϕjx , x ∈ [0, 2T ] . (100)

Substituting t = x − T ∈ [−T , T ], we obtain

f (t) =
M∑
j=1

dj eiϕj t , t ∈ [−T , T ]

with dj := cj eiϕjT , j = 1, . . . ,M. Note that |dj | = |cj | and

‖f ‖L2[−T ,T ] = ‖h‖L2[0, 2T ] .

For simplicity, we can assume that T = π. If T 6= π, then we
substitute s = π

T t ∈ [−π, π] for t ∈ [−T ,T ] such that

f (t) = f (
T

π
s) =

M∑
j=1

dj eiψj s , s ∈ [−π, π] ,

with ψj := T
π ϕj .
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Thus we receive by the gap condition (98) that

ψj+1 − ψj =
T

π

(
ϕj+1 − ϕj

)
≥ T

π
q > 1 .

2. For fixed function k ∈ L1(R) and its Fourier transform

k̂(ω) :=

∫
R
k(t) e−iω t dt , ω ∈ R ,

we see that∫
R
k(t) |f (t)|2 dt =

M∑
j=1

M∑
`=1

dj d̄`

∫
R
k(t) e−i (ψ`−ψj ) t dt

=
M∑
j=1

M∑
`=1

dj d̄` k̂(ψ` − ψj) .
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If we choose

k(t) :=

{
cos t

2 t ∈ [−π, π] ,
0 t ∈ R \ [−π, π] ,

then we obtain the Fourier transform

k̂(ω) =
4 cos(πω)

1− 4ω2
, ω ∈ R \ {−1

2
,

1

2
} , (101)

with k̂(±1
2 ) = π and hence

∫ π

−π
cos

t

2
|f (t)|2 dt =

M∑
j=1

M∑
`=1

k̂(ψ` − ψj) dj d̄` . (102)
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3. From (102) it follows immediately that∫ π

−π
|f (t)|2 dt ≥

M∑
j=1

M∑
`=1

k̂(ψ` − ψj) dj d̄` .

Let S1 denote that part of the above double sum for which j = `
and let S2 be the remaining part. Clearly, by k̂(0) = 4 we get

S1 = 4
M∑
j=1

|dj |2 . (103)

Since k̂ is even and since 2 |dj d̄`| ≤ |dj |2 + |d`|2, there are
constants θj ,` ∈ C with |θj ,`| ≤ 1 and θj ,` = θ̄`,j such that

S2 =
M∑
j=1

M∑
`=1
` 6=j

|dj |2 + |d`|2

2
θj ,` |k̂(ψ` − ψj)|

=
M∑
j=1

|dj |2
( M∑

`=1
6̀=j

Re θj ,` |k̂(ψ` − ψj)|
)
.
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Consequently, there exists a constant θ ∈ [−1, 1] such that

S2 = θ

M∑
j=1

|dj |2
( M∑

`=1
6̀=j

|k̂(ψ` − ψj)|
)
. (104)

Since |ψ` − ψj | ≥ |`− j | q > 1 for ` 6= j by (98), we receive by 101
that

M∑
`=1
` 6=j

|k̂(ψ` − ψj)| ≤
M∑
`=1
6̀=j

4

4 (`− j)2 q2 − 1
<

8

q2

∞∑
n=1

1

4n2 − 1

=
4

q2

∞∑
n=1

( 1

2n − 1
− 1

2n + 1

)
=

4

q2
. (105)

Hence from (103) – (105) it follows that

1

2π

∫ π

−π
|f (t)|2 dt ≥ α(π)

M∑
j=1

|dj |2

with α(π) = 2
π

(
1− 1

q2

)
.
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In the case T 6= π, we obtain α(T ) = 2
π

(
1− π2

T 2q2

)
by the

substitution in step 1 and hence

‖h‖2
L2[0, 2T ] ≥ α(T )

M∑
j=1

|cj |2 = α(T ) ‖c‖2
2 .

4. From (102) – (105) it follows that∫ π

−π
cos

t

2
|f (t)|2 dt ≥

∫ π/2

−π/2
cos

t

2
|f (t)|2 dt ≥

√
2

2

∫ π/2

−π/2
|f (t)|2 dt

and further ∫ π

−π
cos

t

2
|f (t)|2 dt

=
M∑
j=1

M∑
`=1

k̂(ψ` − ψj) dj d̄`

≤ 4
M∑
j=1

|dj |2 +
4

q2

M∑
j=1

|dj |2 =
(

1 +
1

q2

) M∑
j=1

|dj |2 .
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Thus we obtain

1

π

∫ π/2

−π/2
|f (t)|2 dt ≤ 4

√
2

π

(
1 +

1

q2

) M∑
j=1

|dj |2 . (106)

5. Now we consider the function

g(t) := f (2t) =
M∑
j=1

dj e2iψj t , t ∈
[
− π

2
,
π

2

]
,

where the ordered frequencies 2ψj fulfill the gap condition

2ψj+1 − 2ψj ≥ 2 q , j = 1, . . . ,M − 1 .

Applying (106) to the function g , we receive

1

2π

∫ π

−π
|f (t)|2 dt =

1

π

∫ π/2

−π/2
|g(t)|2 dt ≤ 4

√
2

π

(
1+

1

4q2

) M∑
j=1

|dj |2 .

Hence β(π) = 4
√

2
π (1 + 1

4q2 ) and β(T ) = 4
√

2
π (1 + π2

4T 2q2 ) by the
substitution in step 1.
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Thus we obtain

‖h‖2
L2[0, 2T ] ≤ β(T )

M∑
j=1

|dj |2 = β(T ) ‖c‖2
2 .

This completes the proof.

Remark 83

The Ingham inequalities (99) can be considered as far-reaching
generalization of the Parseval equa for Fourier series. The
constants α(T ) and β(T ) are not optimal in general. Note that
these constants are independently of M. The assumption q > π

T is
necessary for the existence of positive α(T ). Compare also with [9,
Theorems 7.6.5 and 7.6.6] and [37].

278 / 302



In the following, we present a discrete version of the Ingham
inequalities (99) (see [40, 43, 2]). For sufficiently large integer
P > M, we consider the rectangular Vandermonde matrix

VP,M(z) :=
(
zk−1
j

)P,M
k,j=1

=


1 1 . . . 1
z1 z2 . . . zM
...

...
...

zP−1
1 zP−1

2 . . . zP−1
M


with z = (zj)

M
j=1, where zj = eiϕj , j = 1, . . . ,M, are distinct nodes

on the unit circle. Setting ϕj = 2π ψj , j = 1, . . . ,M, we measure
the distance between distinct frequencies ψj , ψ` by d(ψj − ψ`),
where d(x) denotes the distance of x ∈ R to the nearest integer,
i.e.,

d(x) := min
n∈Z
|x − n| ∈ [0,

1

2
] .
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Our aim is a good estimation of the spectral condition number of
VP,M(z). Therefore we assume that ψj , j = 1, . . . ,M, satisfy the
gap condition

min {d(ψj − ψ`) : j , ` = 1, . . . ,M, j 6= `} ≥ ∆ > 0 . (107)

The following discussion is mainly based on a generalization of
Hilbert’s inequality (see [43, 2]). Note that the Hilbert’s inequality
reads originally as follows:

Lemma 84

For all x = (xj)
M
j=1 ∈ CM it holds Hilbert’s inequality

∣∣ M∑
j,`=1
j 6=`

xj x`
j − `

∣∣ ≤ π ‖x‖2
2 .
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Proof: For arbitrary vector x = (xj)
M
j=1 ∈ CM , we form the

trigonometric polynomial

p(t) :=
M∑
k=1

xk ei k t

such that

|p(t)|2 =
M∑

k,`=1

xk x` ei (k−`) t .

Using

1

2π i

∫ 2π

0
(π − t) ei n t dt =

{
0 n = 0 ,
1
n n ∈ Z \ {0} ,

we obtain

1

2π i

∫ 2π

0
(π − t) |p(t)|2 dt =

M∑
k,`=1
k 6=`

xk x`
k − `

.
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Note that |π − t| ≤ π for t ∈ [0, 2π]. From the triangle inequality
and the Parseval equality in L2(T) it follows that

1

2π

∣∣ ∫ 2π

0
(π−t) |p(t)|2 dt

∣∣ ≤ 1

2

∫ 2π

0
|p(t)|2 dt = π

M∑
j=1

|xj |2 = π ‖x‖2
2 .

The proof of generalized Hilbert’s inequality applies the following
result:

Lemma 85

For all x ∈ R \ Z we have

(
sin(πx)

)−2
+ 2

∣∣cot(πx)

sin(πx)

∣∣ ≤ 3

π2 d(x)2
. (108)
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Proof: It suffices to show (108) for all x ∈ (0, 1
2 ]. Substituting

t = πx ∈ (0, π2 ], (108) means

3 (sin t)2 ≥ t2 (1 + 2 cos t) .

This inequality is equivalent to

3 (sinc t)2 ≥ 1 + 2 cos t , t ∈ [0,
π

2
] ,

which is true by the behaviors of the concave functions 3 (sinc t)2

and 1 + 2 cos t on the interval [0, π2 ].
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Theorem 86

(see [44, Theorem 1]) Assume that the distinct values ψj ∈ R,
j = 1, . . . ,M, fulfill the gap condition (107) with a constant
∆ > 0.
Then generalized Hilbert’s inequality

∣∣ M∑
j,`=1
j 6=`

xj x`

sin
(
π (ψj − ψ`)

)∣∣ ≤ 1

∆
‖x‖2

2 (109)

holds for all x = (xj)
M
j=1 ∈ CM .
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Proof: 1. Setting

sj ,` :=

{ [
sin
(
π (ψj − ψ`)

)]−1
j 6= ` ,

0 j = `

for all j , ` = 1, . . . ,M, we form the matrix S := −i
(
sj ,`
)M
j ,`=1

which
is Hermitian. Let the eigenvalues of S be arranged in increasing
order −∞ < λ1 ≤ . . . ≤ λM <∞. By the Rayleigh–Ritz theorem
(see [20, pp. 234–235]) we have for all x ∈ CM with ‖x‖2 = 1,

λ1 ≤ xH S x ≤ λM .

Suppose that λ ∈ R is such an eigenvalue of S with
|λ| = max {|λ1|, |λM |}. Then we have the sharp inequality

|xH S x| =
∣∣ M∑
j ,`=1

xj x` sj ,`
∣∣ ≤ |λ|

for all normed vectors x = (xj)
M
j=1 ∈ CM . Now we show that

|λ| ≤ 1
∆ .
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2. Related to the eigenvalue λ of S, there exists a normed
eigenvector y = (yj)

M
j=1 ∈ CM with S y = λ y, i.e.,

M∑
j=1

yj sj ,` = iλ y` , ` = 1, . . . ,M . (110)

Thus we have yH S y = λ yH y = λ. Applying the Cauchy–Schwarz
inequality, we estimate

|yH S y|2 =
∣∣ M∑
j=1

yj
( M∑
`=1

y ` sj ,`
∣∣2 ≤ ‖y‖2

2

( M∑
j=1

∣∣ M∑
`=1

y ` sj ,`
∣∣2)

=
M∑
j=1

∣∣ M∑
`=1

y ` sj ,`
∣∣2 =

M∑
j=1

M∑
`,m=1

y ` ym sj ,` sj ,m

=
M∑

`,m=1

y ` ym

M∑
j=1

sj ,` sj ,m = S1 + S2
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with the partial sums

S1 :=
M∑
`=1

|y`|2
M∑
j=1

s2
j ,` , S2 :=

M∑
`,m=1
6̀=m

y ` ym

M∑
j=1

sj ,` sj ,m .

3. For distinct α, β ∈ R \ (π Z) it holds

1

(sinα) (sinβ)
=

cotα− cotβ

sin(β − α)

such that for all indices with j 6= `, j 6= m, and ` 6= m we have

sj ,` sj ,m = s`,m
[

cot
(
π(ψj − ψ`)

)
− cot

(
π(ψj − ψm)

)]
.

Now we split the sum S2 in the following way

S2 =
M∑

`,m=1
` 6=m

y ` ym

M∑
j=1

j 6=` , j 6=m

s`,m
[

cot
(
π(ψj − ψ`)

)
− cot

(
π(ψj − ψm)

)]
= S3 − S4 + 2 ReS5

with following sums
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S3 :=
M∑

`,m=1
` 6=m

M∑
j=1
j 6=`

y ` ym s`,m cot
(
π(ψj − ψ`)

)
,

S4 :=
M∑

`,m=1
` 6=m

M∑
j=1
j 6=m

y ` ym s`,m cot
(
π(ψj − ψm)

)
,

S5 :=
M∑

j, `=1
j 6=`

y ` yj sj ,` cot
(
π(ψj − ψ`)

)
.

Note that 2 Re S5 is the correction sum, since S3 contains the
additional terms for j = m and S4 contains the additional terms for
j = `.
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4. First we show that S3 = S4. From (110) it follows that

S3 =
M∑
`, j=1
` 6=j

y `
( M∑
m=1

ym s`,m
)

cot
(
π(ψj − ψ`)

)

= −iλ

M∑
`, j=1
6̀=j

|y`|2 cot
(
π(ψj − ψ`)

)
.

Analogously, we see that

S4 =
M∑

j,m=1
j 6=m

ym
( M∑
`=1

y ` s`,m
)

cot
(
π(ψj − ψm)

)

= −iλ

M∑
j,m=1
j 6=m

|ym|2 cot
(
π(ψj − ψm)

)
.

Hence we obtain the estimate

|λ|2 = |yH S y|2 = S1 + S2 = S1 + 2 ReS5 ≤ S1 + 2 |S5| .
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Using 2 |y ` yj | ≤ |y`|2 + |yj |2, we estimate

2 |S5| ≤
M∑

j, `=1
j 6=`

2 |y ` yj | |sj ,` cot
(
π(ψj − ψ`)

)
|

≤ 2
M∑

j, `=1
j 6=`

|y`|2 |sj ,` cot
(
π(ψj − ψ`)

)
|

such that

S1 + 2 |S5| ≤
M∑

j, `=1
j 6=`

|y`|2
[
s2
j ,` + 2 |sj ,` cot

(
π(ψj − ψell)

)
|
]
.

By Lemma 85 we obtain

S1+2 |S5| ≤
3

π2

M∑
`=1

|y`|2
M∑
j=1
j 6=`

d(ψj−ψ`)−2 =
3

π2

M∑
j, `=1
j 6=`

d(ψj−ψ`)−2 .
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By assumption, the values ψj , j = 1, . . . ,M, are spaced from each
other by at least ∆, so that

M∑
j=1
j 6=`

d(ψj − ψ`)−2 < 2
∞∑
k=1

(k ∆)−2 =
π2

3 ∆2

and hence

|λ|2 = S1 + S2 ≤ S1 + 2 |S5| <
1

∆2
.

Under the natural assumption that the nodes zj = e2π iψj ,
j = 1, . . . ,M, are well-separated on the unit circle, it can be shown
that the rectangular Vandermonde matrix VP,M(z) is well
conditioned for sufficiently large P > M.
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Theorem 87

(see [40, 43, 2]) Let P ∈ N with P > max{M, 1
∆} be given.

Assume that the frequencies ψj ∈ R, j = 1, . . . ,M, fulfill the gap
condition (107) with a constant ∆ > 0.
Then for all c ∈ CM , the rectangular Vandermonde matrix
VP,M(z) with z = (zj)

M
j=1 fulfills the inequalities

(
P − 1

∆

)
‖c‖2

2 ≤ ‖VP,M(z) c‖2
2 ≤

(
P +

1

∆

)
‖c‖2

2 . (111)

Further the rectangular Vandermonde matrix VP,M(z) has a
uniformly bounded spectral norm condition number

cond2 VP,M(z) ≤
√

P ∆ + 1

P ∆− 1
.
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Proof: 1. Simple computation shows that

‖VP,M(z) c‖2
2 =

P−1∑
k=0

∣∣ M∑
j=1

cj z
k
j

∣∣2 =
P−1∑
k=0

M∑
j , `=1

cj c` e2π i (ψj−ψ`) k

=
P−1∑
k=0

( M∑
j=1

|cj |2 +
M∑

j, `=1
j 6=`

cj c` e2π i (ψj−ψ`) k
)

= P ‖c‖2
2 +

M∑
j, `=1
j 6=`

cj c`
( P−1∑
k=0

e2π i (ψj−ψ`) k
)
.

Determining the sum

P−1∑
k=0

e2π i (ψj−ψ`) k =
1− e2π i (ψj−ψ`)P

1− e2π i (ψj−ψ`)

=
1− e2π i (ψj−ψ`)P

2i eπ i (ψj−ψ`) sin
(
π (ψj − ψ`)

) = −e−π i (ψj−ψ`) − eπ i (ψj−ψ`) (2P−1)

2i sin
(
π (ψj − ψ`)

) ,
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we obtain
‖VP,M(z) c‖2

2 = P ‖c‖2
2 − Σ1 + Σ2 (112)

with the sums

Σ1 :=
M∑

j, `=1
j 6=`

cj c` e−π i (ψj−ψ`)

2i sin
(
π (ψj − ψ`)

) , Σ2 :=
M∑

j, `=1
j 6=`

cj c` eπ i (ψj−ψ`) (2P−1)

2i sin
(
π (ψj − ψ`)

) .

The nodes zj = e2π iψj , j = 1, . . . ,M, are distinct, since we have
(107) by assumption. Applying generalized Hilbert’s inequality
(109) first with xk := ck e−πiψk , k = 1, . . . ,M, yields

|Σ1| ≤
1

2 ∆

M∑
k=1

∣∣ck e−πiψk
∣∣2 =

1

2 ∆
‖c‖2

2 (113)

and then with xk := ck eπiψk (2P−1), k = 1, . . . ,M, results in

|Σ2| ≤
1

2 ∆

M∑
k=1

∣∣ck eπiψk (2P−1)
∣∣2 =

1

2 ∆
‖c‖2

2 (114)

From (112) – (114) it follows the assertion (111) by triangle
inequality.
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2. Let µ1 ≥ . . . ≥ µM > 0 be the ordered eigenvalues of
VP,M(z)H VP,M(z) ∈ CM×M . Using the Raleigh–Ritz theorem (see
[20, pp. 234–235]) and (111), we obtain that for all c ∈ CM

(
P− 1

∆

)
‖c‖2

2 ≤ µM ‖c‖2
2 ≤ ‖VP,M(z) c‖2

2 ≤ µ1 ‖c‖2
2 ≤

(
P− 1

∆

)
‖x‖2

2

and hence

0 < P − 1

∆
≤ λM ≤ λ1 ≤ P +

1

∆
<∞ . (115)

Thus VP,M(z)H VP,M(z) is positive definite and

cond2 VP,M(z) =

√
µ1

µM
≤
√

P ∆ + 1

P ∆− 1
.
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The inequalities (111) can be interpreted as discrete versions of the
Ingham inequalities (99). Now the exponentials e2π iψj · are
replaced by their discretizations

eP(ψj) =
(
e2π iψj k

)P−1

k=0
, j = 1, . . . ,M ,

with sufficiently large integer P > max{M, 1
∆}. Thus the

rectangular Vandermonde matrix can be written as

VP,M(z) =
(
eP(ψ1) | eP(ψ2) | . . . | eP(ψM)

)
with z = (zj)

M
j=1, where zj = e2π iψj , j = 1, . . . ,M, are distinct

nodes on the unit circle. Then (111) provides the discrete Ingham
inequalities

(
P − 1

∆

)
‖c‖2

2 ≤ ‖
M∑
j=1

cj eP(ϕj)‖2
2 ≤

(
P +

1

∆

)
‖c‖2

2 (116)

for all c = (cj)
M
j=1 ∈ CM . In other words, (116) means that the

vectors eP(ϕj), j = 1, . . . ,M, are Riesz stable too.
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Corollary 88

Under the assumptions of Theorem 87, the inequalities(
P − 1

∆

)
‖d‖2

2 ≤ ‖VP,M(z)> d‖2
2 ≤

(
P +

1

∆

)
‖d‖2

2 (117)

hold for all d ∈ CP .

Proof: The matrices VP,M(z) and VP,M(z)> possess the same
singular values µj , j = 1, . . . ,M. By the Rayleigh–Ritz theorem we
obtain that

λM ‖d‖2
2 ≤ ‖VP,M(z)> d‖2

2 ≤ λ1 ‖d‖2
2

for all d ∈ CP . Applying (115), we obtain the inequalities (117).
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Remark 89

In [4, 2], the authors derive bounds on the extremal singular values
and the condition number of the rectangular Vandermonde matrix
VP,M(z) with P ≥ M and z = (zj)

M
j=1 ∈ CM , where the nodes are

in the unit disk, i.e., |zj | ≤ 1 for j = 1, . . . ,M.

By the Vandermonde decomposition of the Hankel matrix
HL,N−L+1 we obtain that

HL,N−L+1 = VL,M(z) (diag c) (VN−L+1,M(z))> . (118)

Under mild conditions, the Hankel matrix HL,N−L+1 of noiseless
data is well-conditioned too.
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Theorem 90

Let L, N ∈ N with M ≤ L ≤ N −M + 1 and
min {L, N − L + 1} > 1

∆ be given. Assume that the frequencies
ψj ∈ R, j = 1, . . . ,M, are well-separated at least by a constant
∆ > 0 and that the nonzero coefficients cj , j = 1, . . . ,M, of the
exponential sum (70) fulfill the condition

0 < γ1 ≤ |cj | ≤ γ2 <∞ , j = 1, . . . ,M . (119)

Then for all y ∈ CN−L+1

γ2
1 α1(L, N, ∆) ‖y‖2

2 ≤ ‖HL,N−L+1 y‖2
2 ≤ γ2

2 α2(L, N, ∆) ‖y‖2
2 .

(120)
with

α1(L, N, ∆) :=
(
L− 1

∆

) (
N − L + 1− 1

∆

)
,

α2(L, N, ∆) :=
(
L +

1

∆

) (
N − L + 1 +

1

∆

)
.
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Theorem 90 (continue)

Further, the lowest (nonzero) respectively largest singular value of
HL,N−L+1 can be estimated by

0 < γ1

√
α1(L, N, ∆) ≤ σM ≤ σ1 ≤ γ2

√
α2(L, N, ∆) . (121)

The spectral norm condition number of HL,N−L+1 is bounded by

cond2 HL,N−L+1 ≤
γ2

γ1

√
α2(L, N, ∆)

α1(L, N, ∆)
. (122)
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Proof: By the Vandermonde decomposition (118) of the Hankel
matrix HL,N−L+1, we obtain that for all y ∈ CN−L+1

‖HL,N−L+1 y‖2
2 = ‖VL,M(z) (diag c) VN−L+1,M(z)> y‖2

2 .

By the estimates (111) and the assumption (119), it follows that

γ2
1

(
L− 1

∆

)
‖VN−L+1,M(z)> y‖2

2

≤ ‖HL,N−L+1 y‖2
2

≤ γ2
2

(
L +

1

∆

)
‖VN−L+1,M(z)> y‖2

2 .

Using the inequalities (117), we obtain the estimates (120).
Finally, the estimates of the extremal singular values and the
spectral norm condition number of HL,N−L+1 arise from (120) and
the Rayleigh–Ritz theorem.
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Remark 91

For fixed N, the positive singular values as well as the spectral
norm condition number of the Hankel matrix HL,N−L+1 depend
strongly on L ∈ {M, . . . ,N −M + 1}. A good criterion for the
choice of optimal window length L is to maximize the lowest
positive singular value σM of HL,N−L+1. It was shown in [52,
Lemma 3.1 and Remark 3.3] that the squared singular values
increase almost monotonously for L = M, . . . , dN2 e and decrease

almost monotonously for L = dN2 e, . . . ,N −M + 1. Note that the
lower bound (121) of the lowest positive singular value σM is
maximal for L ≈ N

2 . Further the upper bound (122) of the spectral
norm condition number of the exact Hankel matrix HL,N−L+1 is
minimal for L ≈ N

2 . Therefore we prefer to choose L ≈ N
2 as

optimal window length. Thus we can ensure that σM > 0 is not
too small. This property is decisively for the correct detection of
the order M in the first step of the MUSIC Algorithm and ESPRIT
Algorithm.
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