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Abstract

The recovery of signal parameters from noisy sampled data is a fundamental problem in digital signal processing. In this paper, we
consider the following spectral analysis problem: Let f be a real–valued sum of complex exponentials. Determine all parameters of
f , i.e., all different frequencies, all coefficients, and the number of exponentials from finitely many equispaced sampled data of f .
This is a nonlinear inverse problem. In this paper, we present new results on an approximate Prony method (APM) which is based
on [1]. In contrast to [1], we apply matrix perturbation theory such that we can describe the properties and the numerical behavior
of the APM in detail. The number of sampled data acts as regularization parameter. The first part of APM estimates the frequencies
and the second part solves an overdetermined linear Vandermonde–type system in a stable way. We compare the first part of APM
also with the known ESPRIT method. The second part is related to the nonequispaced fast Fourier transform (NFFT). Numerical
experiments show the performance of our method.
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1. Introduction

We consider a real–valued sum of complex exponentials of
the form

f (x) :=
M∑

j=−M

ρ j eiω j x (x ∈ R) (1.1)

with complex coefficients ρ j , 0 and real frequenciesω j, where

ω0 = 0 < ω1 < . . . < ωM < π .

For simplicity, we discuss only the case ρ0 , 0. Since f is a
real function, we can assume that

ω j = −ω− j, ρ j = ρ̄− j ( j = 0, . . . ,M) . (1.2)

The frequencies ω j ( j = −M, . . . , M) can be extended with
the period 2π such that for example ω−M−1 := −2π + ωM and
ωM+1 := 2π − ωM . We introduce the separation distance q of
the frequency set {ω j : j = 0, . . . ,M} by

q := min {ω j+1 − ω j; j = 0, . . . ,M} . (1.3)

Then we have qM < π. Let N ∈ N be an integer with N ≥ 2M +

1. Assume that the sampled data hk := f (k) (k = 0, . . . , 2N)
are given. Since ωM < π, we infer that the Nyquist condition
is fulfilled (see [2, p. 183]). From the 2N + 1 sampled data
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hk (k = 0, . . . , 2N) we have to recover the positive integer M,
the complex coefficients ρ j, and the frequencies ω j ∈ [0, π)
( j = 0, . . . ,M) with (1.2) such that

M∑
j=−M

ρ j eiω jk = hk (k = 0, . . . , 2N) .

By N ≥ 2M + 1, the overmodeling factor (2N + 1)/(2M + 1)
is larger than 2. Here 2N + 1 is the number of sampled data
and 2M + 1 is the number of exponential terms. Overmodel-
ing means that the corresponding overmodeling factor is larger
than 1. The above spectral analysis problem is a nonlinear in-
verse problem which can be simplified by original ideas of G.R.
de Prony. But the classical Prony method is notorious for its
sensitivity to noise such that numerous modifications were at-
tempted to improve its numerical behavior. For the more gen-
eral case with ω j ∈ C see e.g. [3] and the references therein.
Our results are based on the paper [1] of G. Beylkin and L.
Monzón. The nonlinear problem of finding the frequencies and
coefficients can be split into two problems. To obtain the fre-
quencies, we solve a singular value problem of the rectangular
Hankel matrix H =

(
f (k + l)

)2N−L,L
k,l=0 and find the frequencies

via roots of a convenient polynomial of degree L, where L de-
notes an a priori known upper bound of 2M + 1. To obtain the
coefficients, we use the frequencies to solve an overdetermined
linear Vandermonde–type system. Note that the solution of the
overdetermined linear Vandermonde–type system is closely re-
lated to the inverse nonequispaced fast Fourier transform stud-
ied recently by the authors [4]. In contrast to [1], we present an
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approximate Prony method (APM) by means of matrix pertur-
bation theory such that we can describe the properties and the
numerical behavior of the APM in detail. The first part of APM
estimates the frequencies and the second part solves an overde-
termined linear Vandermonde-type system in a stable way. We
compare the first part of APM also with the known ESPRIT
method.
In applications, perturbed values h̃k ∈ R of the exact sampled
data hk = f (k) are only known with the property

h̃k = hk + ek , |ek | ≤ ε1 (k = 0, . . . , 2N),

where the error terms ek are bounded by certain accuracy ε1 >
0. Also even if the sampled values hk are accurately deter-
mined, we still have a small roundoff error due to the use of
floating point arithmetic. Furthermore we assume that |ρ j| ≥ ε1
( j = 0, . . . ,M).

This paper is organized as follows. In Section 2, we sketch the
classical Prony method. Then in Section 3, we generalize a first
APM based on ideas of G. Beylkin and L. Monzón [1]. The
Sections 4 and 5 form the core of this paper with new results on
APM. Using matrix perturbation theory, we discuss the proper-
ties of small singular values and related right singular vectors
of a real rectangular Hankel matrix formed by given noisy data.
By means of the separation distance of the frequency set, we
can describe the numerical behavior of the APM also for clus-
tered frequencies, if we use overmodeling. Further we discuss
the sensitivity of the APM to perturbation. Finally, various nu-
merical examples are presented in Section 6.

2. Classical Prony method

The classical Prony method works with exact sampled data.
Following an idea of G.R. de Prony from 1795 (see e.g. [5,
pp. 303–310]), we regard the sampled data hk = f (k) (k =

0, . . . , 2N) as solution of a homogeneous linear difference
equation with constant coefficients. If

hk = f (k) =

M∑
j=−M

ρ j

(
eiω j

)k

with (1.2) is a solution of certain homogeneous linear difference
equation with constant coefficients, then eiω j ( j = −M, . . . , M)
must be zeros of the corresponding characteristic polynomial.
Thus

P0(z) :=
M∏

j=−M

(z − eiω j ) = (z − 1)
M∏
j=1

(z2 − 2z cosω j + 1)

=

2M+1∑
k=0

pk zk (z ∈ C) (2.1)

with p2M+1 = −p0 = 1 is the monic characteristic polynomial of
minimal degree. With the real coefficients pk (k = 0, . . . , 2M +

1), we compose the homogeneous linear difference equation

2M+1∑
l=0

xl+m pl = 0 (m = 0, 1, . . .), (2.2)

which obviously has P0 as characteristic polynomial. Con-
sequently, (2.2) has the real general solution xm =∑M

j=−M ρ j eiω jm (m = 0, 1, . . .) with arbitrary coefficients ρ0 ∈

R and ρ j ∈ C ( j = 1, . . . ,M), where (1.2) is fulfilled. Then
we determine ρ j ( j = 0, . . . ,M) in such a way that xk ≈ hk

(k = 0, . . . , 2N). To this end, we compute the least squares so-
lution of the overdetermined linear Vandermonde–type system

M∑
j=−M

ρ j eiω jk = hk (k = 0, . . . , 2N).

Let L ∈ N be a convenient upper bound of 2M+1, i.e., 2M+1 ≤
L ≤ N. In applications, such an upper bound L is mostly known
a priori. If this is not the case, then one can choose L = N.
The idea of G.R. de Prony is based on the separation of the
unknown frequencies ω j from the unknown coefficients ρ j by
means of a homogeneous linear difference equation (2.2). With
the 2N+1 sampled data hk ∈ R we form the rectangular Hankel
matrix

H := (hl+m)2N−L,L
l,m=0 ∈ R(2N−L+1)×(L+1) . (2.3)

Using the coefficients pk (k = 0, . . . , 2M + 1) of (2.1), we con-
struct the vector p := (pk)L

k=0, where p2M+2 = . . . = pL := 0. By
S :=

(
δk−l−1

)L
k,l=0 we denote the forward shift matrix, where δk

is the Kronecker symbol.

Lemma 2.1 Let L, M, N ∈ N with 2M + 1 ≤ L ≤ N be given.
Furthermore let hk ∈ R be given by

hk = f (k) =

M∑
j=−M

ρ j eiω jk (k = 0, . . . , 2N) (2.4)

with ρ0 ∈ R \ {0}, ρ j ∈ C \ {0} ( j = 1, . . . ,M), ω0 = 0 < ω1 <
. . . < ωM < π, where (1.2) is fulfilled.
Then the rectangular Hankel matrix (2.3) has the singular value
0, where

ker H = span {p,Sp, . . . ,SL−2M−1p}

and
dim (ker H) = L − 2M .

For shortness the proof is omitted. The Prony method is based
on following

Lemma 2.2 Let L, M, N ∈ N with 2M + 1 ≤ L ≤ N be given.
Let (2.4) be exact sampled data with ρ0 ∈ R \ {0}, ρ j ∈ C \ {0}
( j = 1, . . . ,M) and ω0 = 0 < ω1 < . . . < ωM < π, where (1.2)
is fulfilled. Then the following assertions are equivalent:
(i) The polynomial

P(z) =

L∑
k=0

uk zk (z ∈ C) (2.5)

with real coefficients uk (k = 0, . . . , L) has 2M+1 different zeros
eiω j ( j = −M, . . . ,M) on the unit circle.
(ii) 0 is a singular value of the real rectangular Hankel matrix
(2.3) with a right singular vector u := (ul)L

l=0 ∈ RL+1.
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The simple proof is omitted. Now we formulate Lemma 2.2 as
algorithm:

Algorithm 2.3 (Classical Prony Method)
Input: L, N ∈ N (N � 1, 3 ≤ L ≤ N, L is an upper bound of the
number of exponentials), hk = f (k) (k = 0, . . . , 2N), 0 < ε � 1.
1. Compute a right singular vector u = (ul)L

l=0 corresponding
to the singular value 0 of the exact rectangular Hankel matrix
(2.3).
2. Form the corresponding polynomial (2.5) and evaluate all
zeros eiω j ( j = 0, . . . , M̃) with ω j ∈ [0, π) and (1.2) lying on the
unit circle. Note that L ≥ 2M̃ + 1.
3. Compute ρ0 ∈ R and ρ j ∈ C ( j = 1, . . . , M̃) with
(1.2) as least squares solution of the overdetermined linear
Vandermonde–type system

M̃∑
j=−M̃

ρ j eiω jk = hk (k = 0, . . . , 2N). (2.6)

4. Delete all the pairs (ωl, ρl) (l ∈ {1, . . . , M̃}) with |ρl| ≤ ε
and denote the remaining set by {(ω j, ρ j) : j = 1, . . . ,M} with
M ≤ M̃.
Output: M ∈ N, ρ0 ∈ R, ρ j ∈ C, ω j ∈ (0, π) ( j = 1, . . . ,M).

Remark 2.4 We can determine all roots of the polynomial
(2.5) with uL = 1 by computing the eigenvalues of the com-
panion matrix

U :=



0 0 . . . 0 −u0
1 0 . . . 0 −u1
0 1 . . . 0 −u2
...

...
...

...
0 0 . . . 1 −uL−1


∈ RL×L.

This follows immediately from the fact P(z) = det (z I − U).
Note that we consider a rectangular Hankel matrix (2.3) with
only L columns in order to determine the zeros of a polynomial
(2.5) with relatively low degree L (see step 2 of Algorithm 2.3).

Remark 2.5 Let N > 2M + 1. If one knows M or a good ap-
proximation of M, then one can use the following least squares
Prony method, see e.g. [6]. Since the leading coefficient p2M+1
of the characteristic polynomial P0 is equal to 1, (2.2) gives rise
to the overdetermined linear system

2M∑
l=0

hl+m pl = −h2M+1+m p2M+1

= −h2M+1+m (m = 0, . . . , 2N − 2M − 1) ,

which can be solved by a least squares method. See also the
relation to the classic Yule–Walker system [7].

3. Approximate Prony method

The classical Prony method is known to perform poorly when
noisy data are given. Therefore numerous modifications were
attempted to improve the numerical behavior of the classical
Prony method. In practice, only perturbed values h̃k := hk + ek

(k = 0, . . . , 2N) of the exact sampled data hk = f (k) are known.
Here we assume that |ek | ≤ ε1 with certain accuracy ε1 > 0.
Then the rectangular error Hankel matrix

E :=
(
ek+l

)2N−L,L
k,l=0

has a small spectral norm satisfying

‖E‖2 ≤
√
‖E‖1 ‖E‖∞ ≤

√
(L + 1)(2N − L + 1) ε1

≤ (N + 1) ε1 . (3.1)

Thus the perturbed Hankel matrix can be represented by

H̃ :=
(
h̃k+l)2N−L,L

k,l=0 = H + E ∈ R(2N−L+1)×(L+1) . (3.2)

Using an analog of the Theorem of H. Weyl (see [8, p. 419])
and Lemma 2.1, we receive bounds for small singular values of
H̃. More precisely, L − 2M singular values of H̃ are contained
in [0, ‖E‖2], if each nonzero singular value of H is larger than
2 ‖E‖2. In the following we use this property and evaluate a
small singular value σ̃ (0 < σ̃ ≤ ε2 � 1) and corresponding
right and left singular vectors of the perturbed rectangular Han-
kel matrix H̃.
Recently, a very interesting approach is described by G. Beylkin
and L. Monzón [1], where the more general problem of approx-
imation by exponential sums is considered. In contrast to [1],
we consider a perturbed rectangular Hankel matrix (3.2).

Theorem 3.1 (cf. [1]) Let σ̃ ∈ (0, ε2] (0 < ε2 � 1) be a
small singular value of the perturbed rectangular Hankel ma-
trix (3.2) with a right singular vector ũ =

(
ũk

)L
k=0 ∈ RL+1 and

a left singular vector ṽ =
(
ṽk

)2N−L
k=0 ∈ R2N−L+1. Assume that the

polynomial

P̃(z) =

L∑
k=0

ũk zk (z ∈ C), (3.3)

has L pairwise distinct zeros w̃n ∈ C (n = 1, . . . , L). Further let
K > 2N.
Then there exists a unique vector (an)L

n=1 ∈ CL such that

h̃k =

L∑
n=1

an w̃k
n + σ̃ dk (k = 0, . . . , 2N) ,

where the vector
(
dk

)K−1
k=0 ∈ CK is defined as follows. Let

ûl :=
L−1∑
k=0

ũk e−2πikl/K (l = 0, . . . , K − 1) , (3.4)

v̂l :=
2N−L∑
k=0

ṽk e−2πikl/K (l = 0, . . . , K − 1) , (3.5)

d̂l :=

 v̂l/ ¯̂ul if ûl , 0,

1 if ûl = 0.
(3.6)
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Then

dk :=
1
K

K−1∑
l=0

d̂l e2πikl/K (k = 0, . . . , K − 1). (3.7)

The vector (an)L
n=1 can be computed as solution of the linear

Vandermonde system

L∑
n=1

an w̃k
n = h̃k − σ̃ dk (k = 0, . . . , L − 1). (3.8)

Furthermore, if

|v̂l| ≤ γ |ûl| (l = 0, . . . ,K − 1)

for certain constant γ > 0, then

K−1∑
k=0

|dk |
2 ≤ γ2,

|hk −

L∑
n=1

an w̃k
n| ≤ ε1 + γ ε2 (k = 0, . . . , 2N) .

Proof. 1. From H̃ ũ = σ̃ ṽ (and H̃T ṽ = σ̃ ũ) it follows that

L∑
l=0

h̃l+m ũl = σ̃ ṽm (m = 0, . . . , 2N − L). (3.9)

We set ũn := 0 (n = L + 1, . . . ,K − 1) and extend the vec-
tor

(
ũn

)K−1
n=0 to the K–periodic sequence

(
ũn

)∞
n=0 by ũn+ jK := ũn

( j ∈ N; n = 0, . . . ,K − 1). Analogously, we set ṽn := 0
(n = 2N − L + 1, . . . ,K − 1) and form the K–periodic sequence(
ṽn

)∞
n=0 by ṽn+ jK := ṽn ( j ∈ N; n = 0, . . . ,K − 1). Then we con-

sider the inhomogeneous linear difference equation with con-
stant coefficients

L∑
n=0

xk+n ũn = σ̃ ṽk (k = 0, 1, . . .) (3.10)

under the initial conditions xk = h̃k (k = 0, . . . , L − 1). By
assumption, the polynomial P̃ possesses L pairwise different
zeros such that ũL , 0. Hence the linear difference equation
(3.10) has the order L. Thus the above initial value problem of
(3.10) is uniquely solvable.
2. As known, the general solution of (3.10) is the sum of the
general solution of the corresponding homogeneous linear dif-
ference equation

L∑
n=0

xk+n ũn = 0 (k = 0, 1, . . .) (3.11)

and a special solution σ̃ (dk)∞k=0 of (3.10). The characteristic
equation of (3.10) is P̃(z) = 0 and has the pairwise different so-
lutions w̃n ∈ C (n = 1, . . . , L) by assumption. Thus the general
solution of (3.10) reads as follows

xk =

L∑
n=1

an w̃k
n + σ̃ dk (k = 0, 1, . . .)

with arbitrary constants an ∈ C. By the initial conditions xk =

h̃k (k = 0, . . . , L − 1), the constants an are the unique solutions
of the linear Vandermonde system (3.8). Note that (xk)∞k=0 is not
an K–periodic sequence in general.
3. By ũL , 0, we can extend the given data vector

(
h̃l
)2N
l=0 to a

sequence
(
h̃l
)∞
l=0 in the following way

h̃2N+k := −
1
ũL

L−1∑
n=0

h̃2N−L+k+n ũn +
σ̃

ũL
ṽ2N−L+k (k = 1, 2, . . .).

Thus we receive
L∑

n=0

h̃k+nũn = σ̃ ṽk (k = 0, 1, . . .),

i.e., the sequence
(
h̃l
)∞
l=0 is also a solution of (3.10) with the ini-

tial conditions xk = h̃k (k = 0, . . . , L−1). Since this initial value
problem is uniquely solvable, it follows for all k = 0, 1 . . . that

h̃k = xk =

L∑
n=1

an w̃k
n + σ̃ dk .

4. By means of discrete Fourier transform of length K
(DFT(K)), we can construct a special K–periodic solution
σ̃ (dk)∞k=0 of (3.10). Then for the K–periodic sequences (dk)∞k=0,
(ũk)∞k=0, and (ṽk)∞k=0 we obtain

L∑
n=0

dk+n ũn =

K−1∑
n=0

dk+n ũn = ṽk (k = 0, . . . ,K − 1) , (3.12)

where ( K−1∑
n=0

dk+n ũn

)∞
k=0

is the K–periodic correlation of (ũk)∞k=0 with respect to (dk)∞k=0.
Introducing the following entries (3.4), (3.5), and

d̂l :=
K−1∑
k=0

dk e−2πikl/K (l = 0, . . . ,K − 1) ,

from (3.12) it follows by DFT(K) that

d̂l ¯̂ul = v̂l (l = 0, . . . , K − 1).

Note that ûl = 0 implies v̂l = 0. Hence we obtain (3.6) with
|d̂l| ≤ γ (l = 0, . . . , K−1). In the case L = N, one can show that
γ = 1. Using inverse DFT(K), we receive (3.7). By Parseval
equation we see that

K−1∑
k=0

|dk |
2 =

1
K

K−1∑
l=0

|d̂l|
2 ≤ γ2

and hence |dk | ≤ γ (k = 0, . . . ,K −1). Then for k = 0, . . . ,K −1
we can estimate

|hk −

L∑
n=1

an w̃k
n| ≤ |hk − h̃k | + |h̃k −

L∑
n=1

an w̃k
n|

≤ ε1 + γ σ̃ ≤ ε1 + γ ε2 .

This completes the proof.
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Remark 3.2 This Theorem 3.1 yields a different representation
for each K > 2N even though w̃n and σ̃ remain the same.
If K is chosen as power of 2, then the entries ûl, v̂l and dk

(l, k = 0, . . . ,K − 1) can be computed by fast Fourier trans-
forms. Note that the least squares solution

(
b̃n

)L
n=1 of the overde-

termined linear Vandermonde–type system

L∑
n=1

b̃n w̃k
n = h̃k (k = 0, . . . , 2N) (3.13)

has an error with Euclidean norm less than γ ε2, since
2N∑
k=0

|h̃k −

L∑
n=1

b̃n w̃k
n|

2 ≤

2N∑
k=0

|h̃k −

L∑
n=1

an w̃k
n|

2

=

2N∑
k=0

|σ̃ dk |
2 ≤ σ̃2

K−1∑
k=0

|dk |
2 ≤ (γ ε2)2 .

By Remark 3.2 an algorithm of the first APM (cf. [1]) reads as
follows:

Algorithm 3.3 (APM 1)
Input: L, N ∈ N (3 ≤ L ≤ N, L is an upper bound of the
number of exponentials), h̃k ∈ R (k = 0, . . . , 2N) , accuracies
ε1, ε2 > 0.

1. Compute a small singular value σ̃ ∈ (0, ε2] and corre-
sponding right and left singular vectors ũ =

(
ũl
)L
l=0 ∈ RL+1,

ṽ =
(
ṽl
)2N−L
l=0 ∈ R2N−L+1 of the perturbed rectangular Hankel

matrix (3.2).
2. Determine all zeros w̃n ∈ C (n = 1, . . . , L) of the corre-
sponding polynomial (3.3). Assume that all the zeros of P̃ are
simple.
3. Determine the least squares solution

(
b̃n

)L
n=1 ∈ CL of the

overdetermined linear Vandermonde–type system (3.13).
4. Denote by (w j, ρ j) ( j = −M, . . . ,M) all that pairs (w̃k, b̃k)
(k = 1, . . . , L) with the properties |w̃k | ≈ 1 and |b̃k | ≥ ε1.
Assume that arg w j ∈ [0, π) and w j = w̄− j ( j = 0, . . . ,M). Set
ω j := arg w j > 0 ( j = 1, . . . ,M) and ω0 := 0.

Output: M ∈ N, ρ j ∈ C, ω j ∈ [0, π) ( j = 0, . . . ,M).

Similarly as in [1], we are not interested in exact representations
of the sampled values

h̃k =

L∑
n=1

b̃n w̃k
n (k = 0, . . . , 2N)

but rather in approximate representations

|h̃k −

M∑
j=−M

ρ j eiω jk | ≤ ε̃ (k = 0, . . . , 2N)

for very small accuracy ε̃ > 0 and minimal number M of
nontrivial summands. This fact explains the name of our
method too.

4. Approximate Prony method based on NFFT

Now we present a second new approximate Prony method
by means of matrix perturbation theory. First we introduce the
rectangular Vandermonde–type matrix

V :=
(
eikω j

)2N,M
k=0, j=−M ∈ C(2N+1)×(2M+1) . (4.1)

Note that V is also a nonequispaced Fourier matrix (see [9, 10,
4]). We discuss the properties of V. Especially, we show that
V is left–invertible and estimate the spectral norm of its left
inverse. For these results, the separation distance (1.3) plays a
crucial role.

Lemma 4.1 Let M, N ∈ N with N ≥ 2M + 1 given. Further-
more let ω0 = 0 < ω1 < . . . < ωM < π with a separation
distance

q >
1

N + 1
π2

√
3

(4.2)

be given. Let (1.2) be fulfilled. Let D := diag
(
1−|k|/(N+1)

)N
k=−N

be a diagonal matrix.
Then for arbitrary r ∈ C2M+1, the following inequality

(
N+1−

π4

3q2(N + 1)
)
‖r‖2 ≤ ‖D1/2Vr‖22 ≤

(
N+1+

π4

3q2(N + 1)
)
‖r‖2

is fulfilled. Further

L := (VHDV)−1VHD (4.3)

is a left inverse of (4.1) and the squared spectral norm of L can
be estimated by

‖L‖22 ≤
3q2(N + 1)

3q2(N + 1)2 − π4 . (4.4)

Proof. 1. The rectangular Vandermonde–type matrix V ∈

C(2N+1)×(2M+1) has full rank 2M + 1, since its submatrix(
eikω j

)2M,M
k=0, j=−M

is a regular Vandermonde matrix. Hence we infer that VHDV
is Hermitian and positive definite such that all eigenvalues of
VHDV are positive.
2. We introduce the 2π–periodic Fejér kernel FN by

FN(x) :=
N∑

k=−N

(
1 −

|k|
N + 1

)
eikx .

Then we obtain(
VHDV

)
j,l = e−iNω j FN(ω j − ωl) eiNωl ( j, l = −M, . . . ,M)

for the ( j, l)-th entry of the matrix VHDV. We use Gershgorin’s
Disk Theorem (see [8, p. 344]) such that for an arbitrary eigen-
value λ of the matrix VHDV we preserve the estimate (see also
[11, Theorem 4.1])

|λ − FN(0)| = |λ − N − 1|

≤ max
{ M∑

j=−M
j,l

|FN(ω j − ωl)|; l = −M, . . . ,M
}
. (4.5)
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3. Now we estimate the right–hand side of (4.5). As known, the
Fejér kernel FN can be written in the form

0 ≤ FN(x) =
1

N + 1

(
sin((N + 1)x/2)

sin(x/2)

)2

.

Thus we obtain the estimate

M∑
j=−M

j,l

|FN(ω j − ωl)| ≤
1

N + 1

M∑
j=−M

j,l

| sin((ω j − ωl)/2)|−2

for l ∈ {−M, . . . ,M}. In the case l = 0, we use (1.2), qM < π,
ω j ≥ jq ( j = 1, . . . ,M) and

sin x ≥
2
π

x (x ∈ [0, π/2])

and then we estimate the above sum by

M∑
j=−M

j,0

| sin(ω j/2)|−2 = 2
M∑
j=1

(
sin(ω j/2)

)−2
≤ 2π2

M∑
j=1

ω−2
j

≤
2π2

q2

M∑
j=1

j−2 <
π4

3q2 .

By similar arguments, we obtain

M∑
j=−M

j,l

| sin((ω j − ωl)/2)|−2 <
π4

3q2

in case l ∈ {±1, . . . ,±M}. Note that we use the 2π–periodization
of the frequencies ω j ( j = −M, . . . ,M) such that

| sin((ω j − ωl)/2)| = | sin(±π + (ω j − ωl)/2)| .

Hence it follows in each case that

|λ − N − 1| <
π4

3q2(N + 1)
. (4.6)

4. Let λmin and λmax be the smallest and largest eigenvalue of
VHDV, respectively. Using (4.6), we receive

N+1−
π4

3q2(N + 1)
≤ λmin ≤ N+1 ≤ λmax ≤ N+1+

π4

3q2(N + 1)
,

where by assumption

N + 1 −
π4

3q2(N + 1)
> 0 .

Using the variational characterization of the Rayleigh–Ritz ra-
tio for the Hermitian matrix VHDV (see [8, p. 176]), we obtain
for arbitrary r ∈ C2M+1 that

λmin ‖r‖2 ≤ ‖D1/2Vr‖2 ≤ λmax ‖r‖2 .

From
L V =

(
VHDV

)−1
VHD1/2D1/2V = I

it follows that (4.3) is a left inverse of V and that the singular
values of D1/2V lie in [

√
λmin,

√
λmax]. Hence we obtain for the

squared spectral norm of the left inverse L (see also [4, Theo-
rem 4.2])

‖L‖22 ≤ ‖
(
VHDV

)−1
VHD1/2‖22 ‖D

1/2‖22 ≤ λ
−1
min

≤
3q2(N + 1)

3q2(N + 1)2 − π4 .

This completes the proof.

Corollary 4.2 Let M ∈ N be given. Furthermore let ω0 = 0 <
ω1 < . . . < ωM < π with separation distance q. Let (1.2) be
fulfilled.
Then for each N ∈ N with

N >
π2

q
, (4.7)

the squared spectral norm of (4.3) satisfies

‖L‖22 ≤
3

2N + 2
.

Proof. By (4.7) and q M < π, we see immediately that

2M + 1 <
2π
q

+ 1 <
π2

q
< N .

Further from (4.7) it follows that

q >
π2

N
>

π2

√
3(N + 1)

.

Thus the assumptions of Lemma 4.1 are fulfilled. Using the
upper estimate (4.4) of ‖L‖22 and (4.7), we obtain the result.

Corollary 4.3 Let M ∈ N be given. Furthermore let ω0 = 0 <
ω1 < . . . < ωM < π with separation distance q. Let (1.2) be
fulfilled.
Then the squared spectral norm of the Vandermonde–type ma-
trix V is bounded, i.e.,

‖V‖22 ≤ 2N + 1 +
2π
q

(1 + ln
π

q
).

Proof. We follow the lines of the proof of Lemma 4.1 with the
trivial diagonal matrix D := diag (1)N

k=−N . Instead of the Fejér
kernel FN we use the modified Dirichlet kernel

DN(x) :=
2N∑
k=0

eikx = eiNx sin((2N + 1)x/2)
sin(x/2)

and we obtain for the ( j, l)-th entry of VHV(
VHV

)
j,l = DN(ω j − ωl) ( j, l = −M, . . . ,M) .

We proceed with

|λ − DN(0)| = |λ − (2N + 1)|

≤ max
{ M∑

j=−M
j,l

|DN(ω j − ωl)|; l = −M, . . . ,M
}
,
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use the estimate

M∑
j=−M

j,l

|DN(ω j − ωl)| ≤
M∑

j=−M
j,l

| sin((ω j − ωl)/2)|−1

and infer

M∑
j=−M

j,0

| sin(ω j/2)|−1 = 2
M∑
j=1

(
sin(ω j/2)

)−1
≤ 2π

M∑
j=1

ω−1
j

≤
2π
q

M∑
j=1

j−1 <
2π
q

(1 + ln M) <
2π
q

(
1 + ln

π

q
)
.

Finally we obtain for the largest eigenvalue of VHV

λmax(VHV) ≤ 2N + 1 +
2π
q

(1 + ln
π

q
)

and hence the assertion.

Let L, M, N ∈ N with 2M + 1 ≤ L ≤ N be given, where L is
even. Now we consider a special submatrix V1 of V defined by

V1 :=
(
eikω j

)2N−L,M
k=0, j=−M ∈ C(2N−L+1)×(2M+1) .

The matrix V1 has full rank 2M + 1 (see step 1 of Lemma 4.1).
Hence VH

1 D1V1 is Hermitian and positive definite, where

D1 := diag
(
1 −

|k|
N + 1 − L/2

)N−L/2
k=−N+L/2 .

Using Lemma 4.1, the matrix V1 has a left inverse

L1 := (VH
1 D1V1)−1VH

1 D1 .

Theorem 4.4 Let L, M, N ∈ N with 2M + 1 ≤ L ≤ N be given,
where L is even. Furthermore let hk ∈ R be given as in (2.4)
with ρ0 ∈ R \ {0}, ρ j ∈ C \ {0} ( j = 1, . . . ,M), and ω0 =

0 < ω1 < . . . < ωM < π. Let (1.2) be fulfilled. Assume that the
perturbed Hankel matrix (3.2) has σ̃ ∈ (0, ε2] as singular value
with the corresponding normed right and left singular vectors
ũ = (ũn)L

n=0 ∈ RL+1 and ṽ = (ṽm)2N−L
m=0 ∈ R2N−L+1. Let P̃ be the

polynomial (3.3) related to ũ.
Then the values P̃(eiω j ) ( j = −M, . . . ,M) fulfill the estimate

ρ2
0 P̃(1)2 + 2

M∑
j=1

|ρ j|
2|P̃(eiω j )|2 ≤ (ε2 + ‖E‖2)2 ‖L1‖

2
2 .

Proof. 1. By assumption we have H̃ ũ = σ̃ ṽ, i.e.,

L∑
l=0

h̃l+m ũl = σ̃ ṽm (m = 0, . . . , 2N − L) .

Applying (2.4) and h̃k = hk+ek, we obtain for m = 0, . . . , 2N−L

M∑
j=−M

ρ j P̃(eiω j ) eimω j = σ̃ ṽm −

L∑
l=0

el+m ũl . (4.8)

2. Using the matrix–vector notation of (4.8) with the rectangu-
lar Vandermonde–type matrix V1, we receive

V1
(
ρ j P̃(eiω j )

)M
j=−M = σ̃ ṽ − E ũ .

The matrix V1 has a left inverse L1 = (VH
1 D1V1)−1VH

1 D1 such
that (

ρ j P̃(eiω j )
)M

j=−M = σ̃L1 ṽ − L1 E ũ

and hence

ρ2
0 P̃(1)2 + 2

M∑
j=1

|ρ j|
2 |P̃(eiω j )|2 ≤ (|σ̃| + ‖E‖2)2 ‖L1‖

2
2 .

This completes the proof.

Lemma 4.5 If the assumptions of Theorem 4.4 are fulfilled with
sufficiently small accuracies ε1, ε2 > 0 and if δ > 0 is the
smallest singular value , 0 of H, then

‖ũ − P ũ‖ ≤
ε2 + (N + 1) ε1

δ
, (4.9)

where P is the orthogonal projector of RL+1 onto ker H. Fur-
thermore the polynomial (3.3) has zeros close to eiω j ( j =

−M, . . . ,M), where

P̃(1)2 + 2
M∑
j=1

|P̃(eiω j )|2

≤

(
2N − L + 1 +

2π
q

(1 + ln
π

q
)
) (
ε2 + (N + 1)ε1

δ

)2

.

Proof. 1. Let ũ and ṽ be normed right and left singular vec-
tors of H̃ with respect to the singular value σ̃ ∈ (0, ε2] such
that H̃ ũ = σ̃ ṽ. By assumption, δ > 0 is the smallest singular
value , 0 of the exact Hankel matrix H. Then δ2 is the small-
est eigenvalue , 0 of the symmetric matrix HTH. Using the
Rayleigh–Ritz Theorem (see [8, pp. 176–178]), we receive

δ2 = min
u,0

u⊥ker H

uTHTHu
uTu

and hence

δ = min
u,0

u⊥ker H

‖Hu‖
‖u‖

= min
ũ−u,0

ũ−u⊥ker H

‖H(ũ − u)‖
‖ũ − u‖

.

Thus the following estimate

δ ‖ũ − u‖ ≤ ‖H(ũ − u)‖

is true for all u ∈ RL+1 with ũ − u ⊥ ker H. Especially for
u = P ũ, we see that ũ − P ũ ⊥ ker H and hence by (3.1)

δ ‖ũ−P ũ‖ ≤ ‖H ũ‖ = ‖(H̃−E) ũ‖ = ‖σ̃ ṽ−E ũ‖ ≤ σ̃+(N +1) ε1

such that (4.9) follows.
2. Thereby u = P ũ is a right singular vector of H with respect
to the singular value 0. Thus the corresponding polynomial
(2.5) has the values eiω j ( j = −M, . . . ,M) as zeros by Lemma
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2.2. By (4.9), the coefficients of P differ only a little from the
coefficients of P̃. Consequently, the zeros of P̃ lie nearby the
zeros of P, i.e., P̃ has zeros close to eiω j ( j = −M, . . . ,M) (see
[8, pp. 539–540]).
By ‖V1‖2 = ‖VH

1 ‖2, (4.9), and Corollary 4.3, we obtain the esti-
mate

M∑
j=−M

|P̃(eiω j )|2 =

M∑
j=−M

|P(eiω j ) − P̃(eiω j )|2

= ‖VH
1 (u − ũ)‖2 ≤ ‖VH

1 ‖
2
2 ‖u − ũ‖2

≤

(
2N − L + 1 +

2π
q

(1 + ln
π

q
)
) (
ε2 + (N + 1)ε1

δ

)2

.

This completes the proof.

Corollary 4.6 Let L, M ∈ N with L ≥ 2M + 1 be given, where
L is even. Furthermore let ω0 = 0 < ω1 < . . . < ωM < π with
separation distance q be given. Let (1.2) be fulfilled. Further
let N ∈ N with

N > max {
π2

q
+

L
2
, L}

be given. Assume that the perturbed rectangular Hankel ma-
trix (3.2) has a singular value σ̃ ∈ (0, ε2] with corresponding
normed right and left singular vectors ũ = (ũn)L

n=0 ∈ RL+1 and
ṽ = (ṽn)2N−L+1

n=0 ∈ R2N−L+1.
Then the values |P̃(eiω j )| ( j = −M, . . . ,M) of (3.3) can be esti-
mated by

ρ2
0 P̃(1)2 + 2

M∑
j=1

|ρ j|
2 |P̃(eiω j )|2 ≤

3
2N − L + 2

(
ε2 + (N + 1) ε1

)2
,

i.e., the values |P̃(eiω j )| ( j = −M, . . . ,M) are small. Further the
polynomial P̃ has zeros close to eiω j ( j = −M, . . . ,M).

Proof. The assertion follows immediately by the assumption
on N, the estimate (3.1), Corollary 4.2, and Theorem 4.4.

Now we can formulate a second approximate Prony method.

Algorithm 4.7 (APM 2)
Input: L, N ∈ N (3 ≤ L ≤ N, L is an upper bound of the number
of exponentials), h̃k = f (k) + ek (k = 0, . . . , 2N) with |ek | ≤ ε1,
accuracies ε1, ε2, ε3, ε4.

1. Compute a right singular vector ũ(1) = (ũ(1)
l )L

l=0 correspond-
ing to a singular value σ(1) ∈ (0, ε2] of the perturbed rectangu-
lar Hankel matrix (3.2).
2. Form the corresponding polynomial P̃(1)(z) :=

∑L
k=0 ũ(1)

k zk

and evaluate all zeros r(1)
j eiω(1)

j ( j = 1, . . . ,M(1)) with ω(1)
j ∈

(0, π), (1.2) and |r(1)
j − 1| ≤ ε4. Note that L ≥ 2M(1) + 1.

3. Compute a right singular vector ũ(2) = (ũ(2)
l )L

l=0 correspond-
ing to a singular value σ(2) ∈ (0, ε2] (σ(1) , σ(2)) of the per-
turbed rectangular Hankel matrix (3.2).
4. Form the corresponding polynomial P̃(2)(z) :=

∑L
k=0 ũ(2)

k zk

and evaluate all zeros r(2)
k eiω(2)

k (k = 1, . . . ,M(2)) with ω(2)
k ∈

(0, π), (1.2) and |r(2)
k − 1| ≤ ε4. Note that L ≥ 2M(2) + 1.

5. Determine all frequencies

ω̃l :=
1
2

(
ω(1)

j(l) + ω(2)
k(l)

)
(l = 1 . . . , M̃),

if there exist indices j(l) ∈ {1, . . . ,M(1)} and k(l) ∈ {1, . . . ,M(2)}

such that |ω(1)
j(l) − ω

(2)
k(l)| ≤ ε3. Replace r(1)

j(l) and r(2)
k(l) by 1. Note

that L ≥ 2M̃ + 1.
6. Compute ρ̃0 ∈ R and ρ̃ j ∈ C ( j = 1, . . . , M̃) with
(1.2) as least squares solution of the overdetermined linear
Vandermonde–type system

M̃∑
j=−M̃

ρ̃ j eiω̃ jk = h̃k (k = 0, . . . , 2N) (4.10)

with the diagonal preconditioner D = diag
(
1− |k|/(N + 1)

)N
k=−N .

For very large M and N use the CGNR method (conjugate
gradient on the normal equations, see e.g. [12, p. 288]),
where the multiplication of the Vandermonde–type matrix

Ṽ :=
(
eikω̃ j

)2N, M̃

k=0, j=−M̃
is realized in each iteration step by the

nonequispaced fast Fourier transform (NFFT, see [9, 10].
7. Delete all the pairs (ω̃l, ρ̃ j) (l ∈ {1, . . . , M̃}) with |ρ̃l| ≤ ε1
and denote the remaining frequency set by {ω j : j = 1, . . . ,M}
with M ≤ M̃.
8. Repeat step 6 and solve the overdetermined linear Vander-
monde–type system

∑M
j=−M ρ j eiω jk = h̃k (k = 0, . . . , 2N) with

respect to the new frequency set {ω j : j = 1, . . . ,M} again.

Output: M ∈ N, ρ0 ∈ R, ρ j ∈ C (ρ j = ρ̄− j), ω j ∈ (0, π)
( j = 1, . . . ,M).

We can determine the zeros of the polynomials P̃(1) and P̃(2) by
computing the eigenvalues of the related companion matrices,
see Remark 2.4. Note that by Corollary 4.6, the correct fre-
quencies ω j can be approximately computed by any right sin-
gular vector corresponding to a small singular value of (3.2).
In general, the additional roots are not nearby for different right
singular vectors. In many applications, Algorithm 4.7 can be
essentially simplified by using only one right singular vector
(cf. steps 1 – 2), omitting the steps 3 – 5, and determining the
frequencies, the coefficients and the number M in the steps 6 –
8. We use this simplified variant of Algorithm 4.7 in our nu-
merical examples of Section 6.
Note that more advanced methods for computing the unknown
frequencies were developed, such as matrix pencil methods. In
[13, 14] a relationship between the matrix pencil methods and
several variants of the ESPRIT method [15, 16] is derived show-
ing comparable performance. Now we replace the steps 1 – 5
of Algorithm 4.7 by the least squares ESPRIT method [17, p.
493]. This leads to the following

Algorithm 4.8 (APM based on ESPRIT)
Input: L, N, P ∈ N (3 ≤ L ≤ N, L is an upper bound of the
number of exponentials, P + 1 is upper bound of the number of
positive frequencies, P + 1 ≤ L), h̃k = f (k) + ek (k = 0, . . . , 2N)
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with |ek | ≤ ε1.

1. Form the perturbed rectangular Hankel matrix (3.2).
2. Compute the singular value decomposition of (3.2) with
a diagonal matrix S ∈ R(2N−L+1)×(L+1) with nonnegative diag-
onal elements in decreasing order, and unitary matrices L ∈
C(2N−L+1)×(2N−L+1) and U :=

(
uk,l

)L
k,l=0 ∈ C(L+1)×(L+1) such that

H̃ = L S UH.
3. Form the matrices U1 := (uk,l)L−1,P

k,l=0 and U2 := (uk+1,l)L−1,P
k,l=0 .

4. Compute the matrix P := U†1U2 ∈ C(P+1)×(P+1), where
U†1 := (UH

1 U1)−1UH
1 is the Moore–Penrose pseudoinverse of U1.

5. Compute the eigenvalues r̃k eiω̃k (k = 1, . . . , P + 1) of the
matrix P, where ω̃k ∈ (0, π) and r̃k ≈ 1 (k = 1, . . . , P + 1).
6. Compute ρ̃0 ∈ R and ρ̃ j ∈ C ( j = 1, . . . , P + 1) with
(1.2) as least squares solution of the overdetermined linear
Vandermonde–type system

P+1∑
j=−P−1

ρ̃ j eiω̃ jk = h̃k (k = 0, . . . , 2N) (4.11)

with the diagonal preconditioner D = diag
(
1− |k|/(N + 1)

)N
k=−N .

For large P and N, use the CGNR method, where the multi-
plication of the Vandermonde–type matrix

(
eikω̃ j

)2N, P+1
k=0, j=−P−1 is

realized in each iteration step by NFFT (see [9, 10]).
7. Delete all the pairs (ω̃l, ρ̃ j) (l ∈ {1, . . . , P + 1}) with |ρ̃l| ≤ ε1
and denote the remaining frequency set by {ω j : j = 1, . . . ,M}
with M ≤ P + 1.
8. Repeat step 6 and solve the overdetermined linear
Vandermonde–type system

∑M
j=−M ρ j eiω jk = h̃k (k =

0, . . . , 2N) with respect to the new frequency set
{ω j : j = 1, . . . ,M} again.

Output: M ∈ N, ρ0 ∈ R, ρ j ∈ C (ρ j = ρ̄− j), ω j ∈ (0, π)
( j = 1, . . . ,M).

Since a good estimate for the number of positive frequencies is
often unknown in advance, we can simply choose P = L − 1
in our numerical experiments. Clearly, we can choose the
parameter L similarly as suggested in [14] based on the
accuracy ε2 as in Algorithm 4.7. Furthermore we would like
to point out that in Algorithm 4.8 the right singular vectors of
H̃ related to the small singular values are discarded, otherwise
the Algorithm 4.7 uses right singular vectors related to the
small singular values in order to compute the roots of the
corresponding polynomials.

Note that Algorithm 4.8 requires more arithmetical operations
than Algorithm 4.7, due to the evaluation of the Moore–Penrose
pseudoinverse of U1 in step 4 of Algorithm 4.8.

5. Sensitivity analysis of the approximate Prony method

In this section, we discuss the sensitivity of step 6 of the Al-
gorithms 4.7 and 4.8, respectively. Assume that N ≥ 2M+1 and
M̃ = M. We solve the overdetermined linear Vandermonde–

type system (4.10) with M = M̃ as weighted least squares prob-
lem ∥∥∥D1/2(Ṽ ρ̃ − h̃

)∥∥∥ = min . (5.1)

Here h̃ =
(
h̃k

)2N
k=0 is the perturbed data vector and

Ṽ =
(
eikω̃ j

)2N,M

k=0, j=−M

is the Vandermonde–type matrix with the computed frequencies
ω̃ j ( j = −M, . . . ,M), where 0 = ω̃0 < ω̃1 < . . . < ω̃M < π,
ω̃ j = −ω̃− j ( j = −M, . . . ,−1) and q̃ is the separation distance
of the computed frequency set {ω̃ j : j = 0, . . . ,M + 1} with
ω̃M+1 = 2π − ω̃M . Note that Ṽ has full rank and that the unique
solution of (5.1) is given by ρ̃ = L̃ h̃ with the left inverse L̃ =(
ṼHD Ṽ

)−1ṼHD of Ṽ.
We begin with a normwise perturbation result, if all frequencies
are exactly determined, i.e., ω j = ω̃ j ( j = −M, . . . ,M), and if a
perturbed data vector h̃ is given.

Lemma 5.1 Assume that ω j = ω̃ j ( j = −M, . . . ,M) and that
|h̃k − hk | ≤ ε1. Let V be given by (4.1). Further let V ρ =

h , o and ρ̃ = L h̃, where (4.3) is a left inverse of V. If the
assumptions of Corollary 4.2 are fulfilled, then for each N ∈ N
with N > π2 q−1 the condition number κ(V) := ‖L‖2 ‖V‖2 is
uniformly (with respect to N) bounded by

κ(V) ≤

√
3 +

3
π

(
1 + ln

π

q

)
. (5.2)

Furthermore, the following stability inequalities are fulfilled

‖ρ − ρ̃‖ ≤

√
3

2N + 2
‖h − h̃‖ ≤

√
3 ε1 , (5.3)

‖ρ − ρ̃‖

‖ρ‖
≤ κ (V)

‖h − h̃‖
‖h‖

. (5.4)

Proof. 1. The condition number κ(V) of the rectangu-
lar Vandermonde–type matrix V is defined as the number
‖L‖2 ‖V‖2. Note that κ(V) does not coincide with the condition
number of V related to the spectral norm, since the left inverse
L is not the Moore–Penrose pseudoinverse of V by D , I. Ap-
plying the Corollaries 4.2 and 4.3, we receive that

κ(V) ≤

√
3 +

3π
(N + 1)q

(
1 + ln

π

q

)
.

This provides (5.2), since by assumption (N + 1) q > π2.
2. The inequality (5.3) follows immediately from ‖ρ − ρ̃‖ ≤
‖L‖2 ‖h − h̃‖ and Corollary 4.2. The estimate (5.4) arises from
(5.3) by multiplication with ‖Vρ‖ ‖h‖−1 = 1.

Now we consider the general case, where the weighted least
squares problem (5.1) is solved for perturbed data h̃k (k =

0, . . . , 2N) and computed frequencies ω̃ j ( j = −M, . . . ,M).

Theorem 5.2 Assume that |h̃k − hk | ≤ ε1 (k = 0, . . . , 2N) and
|ω̃ j − ω j| ≤ δ ( j = 0, . . . ,M). Let V be given by (4.1) and let

Ṽ :=
(
eikω̃ j

)2N,M

k=0, j=−M
.
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Further let Vρ = h and ρ̃ = L̃ h̃, where L̃ =
(
ṼHD Ṽ

)−1ṼHD
is a left inverse of Ṽ. If the assumptions of Corollary 4.2 are
fulfilled, then for each N ∈ N with

N > π2 max {q−1, q̃−1} (5.5)

the following estimate

‖ρ − ρ̃‖ ≤
√

(6N + 6) (2M + 1) ‖h‖ δ +
√

3 ε1

is fulfilled.

Proof. 1. Using the matrix–vector notation, we can write (2.6)
in the form V ρ = h. The overdetermined linear system (4.10)
with M̃ = M reads Ṽ ρ̃ = h̃. Using the left inverse Ṽ, the
solution ρ̃ of the weighted least squares problem

‖D1/2 (
Ṽ ρ̃ − h̃

)
‖ = min

is ρ̃ = L̃ h̃. Thus it follows that

‖ρ − ρ̃‖ = ‖ρ − L̃h̃‖
= ‖L̃ Ṽ ρ − L̃ V ρ − L̃

(
h̃ − h

)
‖

≤ ‖L̃‖2 ‖Ṽ − V‖2 ‖ρ‖ + ‖L̃‖2 ‖h̃ − h‖ .

2. Now we estimate the squared spectral norm of Ṽ − V by
means of the Frobenius norm

‖V − Ṽ‖22 ≤ ‖V − Ṽ‖2F =

2N∑
k=0

M∑
j=−M

∣∣∣eikω j − eikω̃ j
∣∣∣2

=

M∑
j=−M

( 2N∑
k=0

[
2 − 2 cos((ω j − ω̃ j)k)

])
=

M∑
j=−M

(
4N + 1 −

sin
(
(2N + 1/2)(ω j − ω̃ j)

)
sin((ω j − ω̃ j)/2))

)
.

Using the special property of the Dirichlet kernel

sin(4N + 1)x/2
sin x/2

≥ 4 N + 1 +
(
−

1
3

(
2N +

1
2
)3

+
N
6

+
1
24

)
x2 ,

we infer

‖V − Ṽ‖22 ≤

M∑
j=−M

(1
3

(
2N +

1
2
)3
−

N
6
−

1
24

)
δ2

≤
(2N + 1/2)3(2M + 1)

3
δ2 . (5.6)

Thus we receive

‖ρ − ρ̃‖ ≤
1
√

3

(
2N +

1
2
)3/2 √2M + 1 ‖L̃‖ ‖ρ‖ δ + ‖L̃‖2 ‖h̃ − h‖ .

From Corollary 4.2 it follows that for each N ∈ N with (5.5)

‖L̃‖2 ≤
√

3
2N + 2

.

Finally we use

‖h̃ − h‖ ≤
√

2N + 1 ‖h̃ − h‖∞ ≤
√

2N + 1 ε1 ,

‖ρ‖ = ‖L h‖ ≤ ‖L‖2 ‖h‖ ≤
√

3
2N + 2

‖h‖

and obtain the result.

By Theorem 5.2, we see that we have to compute the frequen-
cies very carefully. This is the reason why we repeat the com-
putation of the frequencies in the steps 3–4 of Algorithm 4.7.

6. Numerical examples

Finally, we apply the Algorithms 4.7 and 4.8 to various ex-
amples. We have implemented our algorithms in MATLAB
with IEEE double precision arithmetic. There exist a variety of
algorithms to recover the frequencies ω j like ESPRIT [15, 16]
and more advanced methods like total least squares phased av-
eraging ESPRIT [18, 19]. We emphasize that the aim of this
paper is not a widespread numerical comparison with all the
existing methods. We demonstrate that a straightforward ap-
plication of the ESPRIT method [17, p. 493] leads to similar
results.
Let ω :=

(
ω j

)M
j=0 and ρ :=

(
ρ j

)M
j=0. We compute the frequency

error e(ω) := max j=0,...,M |ω j − ω̃ j|, where ω̃ j are computed by
Algorithm 4.7 and 4.8, respectively. Furthermore let e(ρ) :=
max j=0,...,M |ρ j − ρ̃ j| be the error of the coefficients. Finally we
determine the error e( f ) := max | f (x) − f̃ (x)|/max | f (x)| com-
puted on 10000 equidistant points of the interval [0, 2N], where
f̃ is the recovered exponential sum. For increasing number of
sampled data, we obtain a very precise parameter estimation.
With other words, N acts as regularization parameter.

Example 6.1 We sample the trigonometric sum

f1(x) := 14 − 8 cos(0.453 x) + 9 sin(0.453 x)
+ 4 cos(0.979 x) + 8 sin(0.979 x) − 2 cos(0.981 x)
+ 2 cos(1.847 x) − 3 sin(1.847 x) + 0.1 cos(2.154 x)
− 0.3 sin(2.154 x) (6.1)

at the equidistant nodes x = k (k = 0, . . . , 2N). Then we apply
the Algorithms 4.7 and 4.8 with exact sampled data hk = f1(k),
i.e., ek = 0 (k = 0, . . . , 2N). Thus the accuracy ε1 can be chosen
as the unit roundoff ε1 = 2−53 ≈ 1.11 × 10−16 (see [20, p. 45]).
Note that the frequencies ω2 = 0.979 and ω3 = 0.981 are very
close, so that q = 0.002. Nevertheless for small N and for the
accuracies ε2 = ε3 = ε4 = 10−7, we obtain very precise results,
see Table 6.1. Here we assume that P is unknown and use the
estimate P = L − 1 in Algorithm 4.8.

Example 6.2 We use again the function (6.1). Now we con-
sider noisy sampled data h̃k = f1(k) + ek (k = 0, . . . , 2N), where
ek is a random error with |ek | ≤ ε1 = 5 · 10−5, more precisely
we add pseudorandom values drawn from the standard uniform
distribution on [−5·10−5, 5·10−5]. Now we choose ε4 < 5·10−5.
We see that for noisy sampled data increasing N improves the
results, see Table 6.2. The last column shows the signal–to–
noise ratio SNR := 10 log10 (‖( f1(k))2N

k=0‖ / ‖(ek)2N
k=0‖).

10



N L e(ω) e(ρ) e( f1)

Algorithm 4.7
12 11 1.303e-09 2.624e-06 3.257e-14
20 11 2.057e-11 5.527e-08 1.703e-13
20 19 6.505e-12 4.370e-13 1.202e-14

Algorithm 4.8
12 11 6.971e-10 1.390e-06 5.383e-14
20 11 2.199e-11 5.387e-08 9.778e-14
20 19 6.926e-12 9.948e-14 1.457e-14

Table 6.1: Results for f1 from Example 6.1.

N L e(ω) e(ρ) e( f1) SNR

Algorithm 4.7
20 11 9.876e-01 3.992e-02 1.338e-04 52.64
60 11 2.557e-02 9.801e-04 2.807e-04 52.61
60 19 1.098e-03 1.017e-04 1.771e-05 52.53
60 29 4.135e-04 3.744e-06 5.130e-06 52.81

Algorithm 4.8
20 11 4.006e-01 5.283e-04 3.070e-05 52.85
60 11 5.197e-02 4.762e-04 3.589e-04 52.60
60 19 2.536e-04 3.421e-05 4.991e-06 52.94
60 29 5.493e-04 2.362e-06 6.440e-06 52.54

Table 6.2: Results for f1 from Example 6.2.

Example 6.3 As in [21], we sample the 24–periodic trigono-
metric sum

f2(x) := 2 cos
(πx

6

)
+ 200 cos

(πx
4

)
+ 2 cos

(πx
2

)
+ 2 cos

(5πx
6

)
at the equidistant nodes x = k (k = 0, . . . , 2N). In [21], only the
dominant frequency ω2 = π/4 is iteratively computed via zeros
of Szegö polynomials. For N = 50, ω2 is determined to 2 cor-
rect decimal places. For N = 200 and N = 500, the frequency
ω2 is computed to 4 correct decimal places in [21].
Now we apply the Algorithms 4.7 and 4.8 with the same param-
eters as in Example 6.1, but we use only the 19 sampled data
f2(k) (k = 0, . . . , 18). In this case we are able to compute all
frequencies and all coefficients very accurate, see Table 6.3.

Example 6.4 A different method for finding the frequencies
based on detection of singularities is suggested in [22], where in
addition this method is also suitable for more difficult problems,
such as finding singularities of different orders and estimating
the local Lipschitz exponents. Similarly as in [22], we consider
the 8–periodic test function

f3(x) := 34 + 300 cos(πx/4) + cos(πx/2)

N L e(ω) e(ρ) e( f2)

Algorithm 4.7
9 8 4.996e-15 1.037e-12 7.123e-15

50 8 7.883e-15 2.728e-12 3.045e-14
50 49 9.548e-15 1.536e-11 1.664e-13

Algorithm 4.8
9 8 5.662e-15 1.847e-13 6.1500e-15

50 8 8.105e-15 4.066e-13 8.6300e-14
50 49 2.442e-15 1.423e-11 1.0765e-13

Table 6.3: Results for f2 from Example 6.3.

and sample f3 at the nodes x = k (k = 0, . . . , 2N). Note that in
[22], uniform noise in the range [0, 3] is added and this experi-
ment is repeated 500 times. Then the frequencies are recovered
very accurately. In this case, the noise exceeds the lowest coef-
ficient of f3.
Now we use Algorithm 4.7 and 4.8, where we add noise in the
range [0, R] to the sampled data f3(k) (k = 0, . . . , 2N). For
R = 1 and R = 3 we obtain that the SNR is approximately 28
and 24, respectively.. Of course, we can compute the three fre-
quencies by choosing L = 3 and select all frequencies, i.e., we
choose ε1 = 0. However in this case the error e(ρ) has a high
oscillation depending on the noise, therefore we repeat the ex-
periment also 50 times and present the averages of the errors in
Table 6.4.

Example 6.5 Finally, we consider the function

f4(x) :=
40∑
j=1

cos(ω jx) ,

where we choose random frequencies ω j drawn from the stan-
dard uniform distribution on (0, π). We sample the function f4
at the equidistant nodes x = k (k = 0, . . . , 2N). For the re-
sults of the Algorithms 4.7 and 4.8 see Table 6.5. Note that
without the diagonal preconditioner D the overdetermined lin-
ear Vandermonde–type system is not numerically solvable due
to the ill–conditioning of the Vandermonde–type matrix.

In summary, we obtain very accurate results already for rela-
tively few sampled data. We can analyze both periodic and non-
periodic functions without preprocessing (as filtering or win-
dowing). APM works correctly for noisy sampled data and for
clustered frequencies assumed that the separation distance of
the frequencies is not too small and the number 2N + 1 of sam-
pled data is sufficiently large. We can also use the ESPRIT
method in order to determine the frequencies. Overmodeling
improves the results. The numerical examples show that one
can choose the number 2N + 1 of sampled data less than ex-
pected by the theoretical results. We have essentially improved
the stability of our APM by using a weighted least squares
method. Our numerical examples confirm that the proposed
APM is robust with respect to noise.
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N L R e(ω) e(ρ) e( f3)

Algorithm 4.7
32 5 1 4.718e-03 6.263e-01 3.468e-03
64 5 1 3.438e-03 6.028e-01 3.448e-03
128 5 1 1.672e-03 6.686e-01 3.595e-03
256 5 1 1.205e-03 6.134e-01 3.901e-03
512 5 1 1.192e-03 6.512e-01 4.519e-03

1024 5 1 6.521e-04 6.505e-01 4.601e-03
32 5 3 4.336e-02 1.716e+00 9.667e-03
64 5 3 2.257e-02 1.969e+00 1.037e-02
128 5 3 1.711e-02 1.405e+00 1.058e-02
256 5 3 1.089e-02 1.503e+00 1.154e-02
512 5 3 7.551e-03 1.487e+00 1.011e-02

1024 5 3 6.261e-03 1.710e+00 1.118e-02

Algorithm 4.8
32 5 1 3.992e-03 5.531e-01 3.348e-03
64 5 1 2.953e-03 6.538e-01 3.501e-03
128 5 1 2.068e-03 5.835e-01 3.537e-03
256 5 1 1.329e-03 6.833e-01 3.818e-03
512 5 1 8.220e-04 7.226e-01 4.140e-03

1024 5 1 7.259e-04 5.172e-01 4.543e-03
32 5 3 3.849e-02 1.618e+00 1.047e-02
64 5 3 2.254e-02 1.835e+00 1.054e-02
128 5 3 1.745e-02 1.680e+00 1.073e-02
256 5 3 1.152e-02 2.025e+00 1.091e-02
512 5 3 9.114e-03 2.159e+00 1.158e-02

1024 5 3 7.110e-03 1.866e+00 1.102e-02

Table 6.4: Results for f3 from Example 6.4.
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T. Kailath, P. Khargoneka, S. Mitter (Eds.), Signal Processing, Part II:
Control Theory and Applications, Springer, New York, 1990, pp. 369–
411.

[17] D. G. Manolakis, V. K. Ingle, S. M. Kogon, Statistical and Adaptive Sig-
nal Processing, McGraw-Hill, Boston, 2005.

[18] P. Strobach, Fast recursive low–rank linear prediction frequency estima-
tion algorithms, IEEE Trans. Signal Process. 44 (1996) 834 – 847.

[19] P. Strobach, Total least squares phased averaging and 3-D ESPRIT for
joint azimuth–elevation–carrier estimation, IEEE Trans. Signal Process.
59 (2001) 54 – 62.

[20] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM,
Philadelphia, 1996.

[21] W. B. Jones, O. Njåstad, H. Waadeland, Application of Szegő polynomi-
als to frequency analysis, SIAM J. Math. Anal. 25 (1994) 491 – 512.

[22] H. N. Mhaskar, J. Prestin, On local smoothness classes of periodic func-
tions, J. Fourier Anal. Appl. 11 (2005) 353 – 373.

12


