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Summary. The fast calculation of space-charge fields of bunches of charged particles in three
dimensional space is a demanding problem in accelerator design. Since particles of equal
charge repel each other due to space-charge forces, it is difficult to pack a high charge in a
small volume. For this reason, the calculation of space-charge forces is an important part of
the simulation of the behaviour of charged particles in these machines. As the quality of the
charged particle bunches increases, so do the requirements for the numerical space-charge
calculations.

In this paper we develop a new fast summation algorithm for the determination of the elec-
tric field generated by N charged particles. Applying the nonequidistant Fast Fourier Trans-
form (NFFT) the fast summation requires only O(N log N) operations. The numerical test
cases confirm this behaviour.

1 Introduction

Recent developments in the field of charged particle accelerator research make high
demands on numerical simulations. Among the simulation problems of particle dy-
namics is the three dimensional calculation of Coulomb repulsion, so-called space-
charge fields, of bunches containing millions of particles.

Widely used methods for the calculation of these space-charge fields are the
particle-mesh method and the particle-particle method [5]. The particle-mesh method,
based on solving Poisson’s equation for the electrostatic potential, is typically much
faster than the particle-particle method. Furthermore, it provides better numerical
results for sufficiently “smooth” distributed particles. Progress in the particle-mesh
method has been achieved with the construction of nonequispaced adaptive grids and
the development of multigrid Poisson solvers for grids with large aspect ratio [7, 8].
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The computational effort of the resulting algorithm scales linearly with the number
of particles for a wide range of particle distributions.

Although the particle-mesh method provides good results for most real life sim-
ulations [7], it is on the edge of the requirements for the simulation of very short
bunches present in rf-photoguns based on femtosecond excitation lasers. Also prob-
lematic are simulations of high peak current bunches with a long tail as present after
the compression stage of the Tesla Test Facility (TTF), a novel linear accelerator re-
cently under development and construction at DESY in Hamburg [1]. In both cases,
the main difficulty is the fact that to keep computational costs and memory consump-
tion at an acceptable level, a very high aspect-ratio mesh needs to be constructed
resulting in the degradation of the convergence behaviour of the Poisson solver [8].

Motivated by the above-mentioned problems with the particle-mesh method we
deal in this paper with the development of a new fast calculation technique for the
particle-particle model. The particle-particle method calculates the self-induced field
E generated by N charged particles with the superposition principal. Let the `-th
particle have the charge q` and the position r` (` = 1, . . . , N ) and let ε0 denote the
dielectric constant, then

E(r) =
1

4πε0

N
∑

`=1

q`
r − r`

‖r − r`‖3
, r, r` ∈ R

3, r 6= r`, ` = 1, . . . , N. (1)

The direct summation which requires O(N 2) operations is either very time con-
suming or causes large simulation errors due to the restricted number of particles.
This essentially eliminates its applicability to real life simulations, unless the com-
putation is the restriction to 2 D models [14]. In order to make large scale problems
tractable it is essential to compute these interactions efficiently. A number of al-
gorithms have been proposed for this purpose. The fast multipole method (FMM)
has been one of the most successful, especially for nonuniform particle distributions
(see [15] and references therein). Our new method is fully 3 D and based on the
nonequidistant Fast Fourier Transform (NFFT) [6], hereby reducing the computa-
tional from O(N2) to O(N log N). Although this is still slower compared to the
best particle-mesh methods, it could prove to be advantageous for ultra-short and
’TTF’-like bunches because no mesh needs to be constructed.

In the next chapter we develop the main principles of the fast summation by
NFFT and present an algorithm for the computation of (1). Finally the numerical
experiments in section 3 show that the fast summation technique provides the values
for the field with an acceptable numerical error in much shorter simulation time
compared to direct methods.

2 Fast Summation at Nonequispaced Knots by NFFTs

The fast computation of special structured discrete sums similar to (1) is a frequently
appearing task in the study of particle models [3, 4, 15]. The new fast summation
technique we develop in this paper is based on a method first presented in [9].
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The fast computation of E at the positions rj (j = 1, . . . , N ) is performed for
the two sums

E(rj) =
1

4πε0






rj

N
∑

`=1

j 6=`

q`

‖rj − r`‖3
−

N
∑

`=1

j 6=`

q`
r`

‖rj − r`‖3






(2)

in the following way: As suggested in [9] we use a separation of the knots rj and
r` by Fourier expansions. More precisely, we split the function 1/‖x‖3 into the sum
1/‖x‖3 ≈ KNE +KR. Thereby the function KNE is supposed to have small support
with suppKNE = {x ∈ R3; ‖x‖ ≤ εI}. It can be considered as the near field
approximation of 1/‖x‖3. Further the function KR is chosen as a smooth 1–periodic
function also referred to as the regularisation of 1/‖x‖3. The construction of KR is
somewhat technical so we don’t give it at this place. It is needed for the computation
of the discrete Fourier coefficients bk defined by

bk :=
1

n3

∑

j∈In

KR(j/n) e−2πijk/n (3)

where k runs over the finite index set In := {−n/2, . . . , n/2 − 1}3. A detailed
description can be found in [9] for the one dimensional case which can be straight-
forward applied to the three dimensional problem.

Next, we approximate the smooth function KR by the discrete finite Fourier sum
KRF given by

KR ≈ KRF =
∑

k∈In

bk e2πik· . (4)

Then, 1/‖x‖3 is replaced by 1/‖x‖3 ≈ KRF+KNE. Using the outstanding property
e2πi(rj−r`) = e2πirj e−2πir` , we obtain the desired separation of rj and r` by

1

‖rj − r`‖3
≈
∑

k∈In

bk e2πikrj e−2πikr` + KNE(rj − r`)

and finally

α̂j :=

N
∑

`=1

j 6=`

α`

‖rj − r`‖3
(5)

≈
∑

k∈In

bk

(

N
∑

`=1

α` e−2πikr`

)

e2πikrj +

N
∑

`=1

j 6=`

α`KNE(rj − r`) − αj

∑

k∈In

bk .

The expression in the inner brackets can be computed by a multivariate NFFTT(n),
where NFFTT denotes the transposed version of the NFFT [6]. This is followed by
n3 multiplications with bk and completed by a multivariate NFFT(n) to compute the
outer sum with the complex exponentials. By construction the function KNE has a
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small support such that the summation can be done very efficiently. The approxi-
mation of (5) is used in (2) with α` = q` and α` = q`r`, respectively. Applying
the recently developed fast Fourier transform for nonequispaced data (NFFT) (see
[13, 11] and references therein), we come up with a fast summation algorithm. This
NFFT summation requires for “sufficiently uniformly distributed” points r̀ only
O(N log N) arithmetic operations and can be simply implemented using the pub-
lic domain NFFT toolbox (see e.g. [6]). Note that the NFFT itself is based on the
approximation of functions by translates of one function, which is taken as a Kaiser–
Bessel function in our numerical computations. In summary we obtain the following

Algorithm:

Precomputation:
i) Computation of (bk)k∈In

by (3).
ii) Computation of KNE(rj −r`) for all (j = 1, . . . , N) and ` ∈ INE

εI
(j), where

INE
εI

(j) := {` ∈ {1, . . . , N} : ‖rj − r`‖ < εI}.
1. For k ∈ In compute by four multivariate NFFTT(n)s

q̂k :=
N
∑

`=1

q` e−2πikr` , r̂k :=
N
∑

`=1

q`r` e−2πikr` .

2. For k ∈ In compute the products dk := q̂kbk ∈ C .
3. For j = 1, . . . , N compute by a multivariate NFFT(n)

fRF(rj) := rj

∑

k∈In

dk e2πikrj .

4. For k ∈ In compute the products dk := r̂kbk ∈ C3 .
5. For j = 1, . . . , N compute by three multivariate NFFTs(n)

fRF(rj) := fRF(rj) −
∑

k∈In

dk e2πikrj .

6. For j = 1, . . . , N compute the near field sums

fNE(rj) = rj

∑

`∈INE
εI

(j)

q`KNE(rj − r`) −
∑

`∈INE
εI

(j)

q`r`KNE(rj − r`).

7. For j = 1, . . . , N compute the near field corrections

Ẽ(rj) =
1

4πε0
(fNE(rj) + fRF(rj)) .

Note, that usually the field values are requested at same the locations as the location
of the particles. But the algorithm can also evaluate field values at other points the
number of which has not to be in coincidence with the number of particles (see [9]).
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3 Numerical Results

The algorithms for the fast summation have been implemented in C and tested on an
AMD Atlon xp1800+ 512MB RAM, SuSe-Linux 8.0 using double precision arith-
metic. Throughout our experiments we have applied the NFFT/NFFTT package [6]
with Kaiser–Bessel functions, oversampling factor ρ = 2 and several bandwidth
parameters n which will be specified in the examples. Further the NFFT/NFFTT

algorithms require the parameters p (guarantees the smoothness of KR up to the
derivative of order p − 1 ) and m (controls the accuracy of interpolation by the
Kaiser–Bessel functions) which are for the fast summation chosen as p = 2 and
m = 2. Note, that the fast summation method suggested in (5) was first proposed for
the univariate case in [9] and for the bivariate case in [10] (see also [2]). There er-
ror estimates are proved to obtain clues about the choice of the involved parameters.
For a numerical comparison with the fast multipole method in 2D see [10]. With the
algorithm for the calculation of the electric field we extend these methods to R3.

As numerical test we used a spherical bunch uniformly filled with charged par-
ticles. The total charge of the sphere has been kept with Q = −1 nC. Thus the par-
ticles are assumed to posses the charge qi = q = −1/N nC (i = 1, . . . , N), where
N denotes the number of particles in the sphere. These particles are also regarded as
macro-particles representing the distribution of all particles (for instance electrons)
in a bunch. The uniform particle distributions have been generated with the tracking
code GPT (General Particle Tracer) [12] by means of Hammersley sequences. These
sequences provide pseudo random numbers such that distance between two parti-
cles does not become too small. The advantage of such generated distributions is
represented in Fig. 1 where the numerical error is compared to particle distributions
generated with straightforward computed random numbers.

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of particles

er
ro

r 
of

 th
e 

el
ec

tr
ic

 f
ie

ld

Hammersley
uniform

Fig. 1. The error E2(theo,fast)) of the electric field for particle distributions generated by Ham-
mersley sequences and by straightforward computed random numbers, respectively.
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The fast summation technique is not restricted to the calculation of the discrete
sum (1) but can be applied to a great variety of discrete sums appearing in the study
of particle models. In order to demonstrate the efficiency of our new method with a
more simple discrete sum we start with the calculation of the potential ϕ caused by
N charged particles with charge q given by

ϕ(rj) =
1

4πε0

N
∑

`=1

j 6=`

q

‖rj − r`‖
, (rj ∈ R

3).

The fast summation strategy described in section 2 can be easily adapted to the above
discrete sum. Since a sphere uniformly filled with an increasing number of particles
of equal charge gets more and more close to a sphere with charge Q =

∑N
i=1 q, we

compare the results of the summation to the analytically known potential given by

ϕtheo(rj) =
Q

4πε0

(

3

2
−

‖rj‖

2R2

)

, ‖rj‖ ≤ R,

where R denotes the radius of the sphere.
We have investigated the numerical error

E2(a,b) =

(

N
∑

k=1

|ϕa(rk) − ϕb(rk)|2

)1/2( N
∑

k=1

|ϕa(rk)|2

)−1/2

,

where a and b represent the different techniques for the computation either of the po-
tential or the electric field (slow: straightforward summation, fast: fast summation,
theo: analytical solutions). Similarly the computational time for the straightforward
summation and for the fast summation based on (5) is denoted by tslow and tfast, re-
spectively.

N n tslow tfast E2(theo,slow) E2(theo,fast) E2(slow,fast)
10000 64 6.680e+00 2.310e+00 2.586e-03 2.544e-03 1.206e-04
50000 64 1.777e+02 7.140e+00 1.018e-03 9.755e-04 9.654e-05

100000 64 7.092e+02 1.770e+01 5.630e-04 5.283e-04 1.002e-04
250000 128 4.470e+03 4.821e+01 2.952e-04 2.584e-04 1.125e-04
500000 128 1.756e+04 8.951e+01 2.043e-04 1.647e-04 1.103e-04

1000000 128 7.024e+04∗ 2.257e+02 1.079e-04

Table 1. Computational time and the error E2 for the potential ϕ, *estimated.

The numerical experiments documented in Table 1 show that we obtain with our
fast algorithm the same errors as with the straightforward (slow) summation but with
an numerical effort of only O(N log N). Hereby the parameters of the NFFT are
chosen such that the approximation error is less than the simulation error. Depending
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on the number of particles the Fourier sum (4) has been computed as NFFT(n) with
n = 32, n = 64 and n = 128, respectively (see Tables 1 and 2). The star ∗ means
that the running time of the direct evaluation is obtained by extrapolation. Note that
the straightforward evaluation of the potential ϕ with N = 5 · 106 requires more
that 10 days (see Fig. 2). Finally we test the algorithm for the computation of the
electrostatic field suggested in section 2. It is well known that the field of a charged
sphere is given by

E theo(rj) =
Q

4πε0

( rj

R3

)

, ‖rj‖ ≤ R.

Here we consider the error

E2(a,b) =

(

N
∑

k=1

‖Ea(rk) − Eb(rk)‖2

)1/2( N
∑

k=1

‖Ea(rk)‖2

)−1/2

.

Table 2 represents the results of the related numerical simulations. Figure 2 com-

N n tslow tfast E2(theo,slow) E2(theo,fast) E2(slow,fast)
10000 32 7.580e+00 3.680e+00 1.232e-01 1.232e-01 1.068e-03
50000 64 1.930e+02 2.185e+01 3.204e-02 3.205e-02 5.765e-04

100000 64 7.710e+02 4.810e+01 2.393e-02 2.394e-02 4.662e-04
250000 128 5.781e+03 1.635e+02 1.716e-02 1.718e-02 5.462e-04
500000 128 2.312e+04∗ 2.699e+02 1.446e-02

1000000 128 9.245e+04∗ 6.031e+02 1.468e-02

Table 2. Computational time and the error E2 for the electric field E, *estimated.
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Fig. 2. Performance of the fast NFFT-algorithm compared to the direct summation: computa-
tion of ϕ (left), computation of E (right).

pares the performance of the fast summation algorithm with NFFT to the direct slow
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summation. It shows that the NFFT summation scales with O(N log N). Hence this
new summation technique enables the computation of fully 3 D particle-particle in-
teractions in real life applications.
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