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Abstract In this paper, we study the error behavior of the nonequispaced
fast Fourier transform (NFFT). This approximate algorithm is mainly based
on the convenient choice of a compactly supported window function. So far,
various window functions have been used and new window functions have
recently been proposed. We present novel error estimates for NFFT with com-
pactly supported, continuous window functions and derive rules for convenient
choice from the parameters involved in NFFT. The error constant of a win-
dow function depends mainly on the oversampling factor and the truncation
parameter.
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1 Introduction

Since the restriction to equispaced data is an essential drawback in several
applications of discrete Fourier transform, one has developed fast algorithms
for nonequispaced data, the so-called nonequispaced fast Fourier transform
(NFFT), see [8,6,24,20,12,11] and [18, Chapter 7].
In this paper we investigate error estimates for the NFFT, where we restrict
ourselves to an approximation by translates of a previously selected, contin-
uous window function with compact support. Other approaches based on the
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fast multipole method and on the low-rank approximation were presented in
[9,22].
After the seminal paper [24], the similarities of the window-based algorithms
for NFFT became clear. In the following, we give an overview of the window-
based NFFT used so far. In this construction of NFFT, a window function is
applied together with its Fourier transform. This connection is very important
in order to deduce error estimates for the NFFT. This made it possible to
determine convenient parameters of the involved window function. To develop
an NFFT, the necessary Fourier coefficients of the periodized window function
can simply be calculated by a convenient quadrature rule. A challenge are
error estimations in order to determine the parameters of the window function
involved. By C(T) we denote the Banach space of all 1-periodic, continuous
functions, where T = R/Z is the torus.
The considered window functions depend on some parameters. Assume that
N ∈ 2N is the order of the given 1-periodic trigonometric polynomial which
values will be computed by NFFT. Let σ > 1 be an oversampling factor such
that N1 := σN ∈ 2N. For fixed truncation parameter m ∈ N \ {1} with
2m� N1, we denote by Φm,N1 the set of all window functions ϕ : R→ [0, 1]
with the following properties:

• Each window function ϕ is even, has a compact support [−m/N1, m/N1],
and is continuous on R.
• Each restricted window function ϕ|[0,m/N1] is decreasing with ϕ(0) =
1 and ϕ(m/N1) = 0.
• For each window function ϕ, the Fourier transform

ϕ̂(v) :=

∫
R
ϕ(t) e−2πi vt dt = 2

∫ m/N1

0

ϕ(t) cos(2π vt) dt

is positive for all v ∈ [−N/2, N/2].

Note that for fixed N1 the truncation parameter m determines the size of the
support of ϕ ∈ Φm,N1

. If a window function ϕ ∈ Φm,N1
has the form

ϕ(x) =
1

ϕ1

(
β ϕ2(0)

) ϕ1

(
β ϕ2(x)

)
, x ∈ R ,

with β > 0 and convenient functions ϕ1, ϕ2, then β is a so-called shape pa-
rameter of ϕ. Examples of window functions of the set Φm,N1

are the B-spline
window function (5.4), the modified B-spline window function (5.6), the alge-
braic window function (5.7), the Bessel window function (5.14), the sinh-type
window function (5.21), the related sinh-type functions, see Subsection 5.5, the
modified cosh-type window function (5.22) and the related cosh-type window
functions, see Subsection 5.6. Note that the Kaiser–Bessel window function
(see [18, p. 393]) and the Gaussian window function (see [18, p. 390]) are not
contained in Φm,N1 , since these window functions are supported on whole R.

The aim of this paper is a systematic approach to uniform error estimates for
NFFT, where a compactly supported, continuous window function ϕ ∈ Φm,N1
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is used. We introduce the C(T)-error constant

eσ(ϕ) = sup
N∈2N

(
max
n∈IN

∥∥ ∑
r∈Z\{0}

ϕ̂(n+ rN1)

ϕ̂(n)
e2πi rN1 ·

∥∥
C(T

)
,

where IN denotes the index set {−N/2, 1−N/2, . . . , N/2− 1}. As shown in
Lemma 2, the uniform error of the NFFT with nonequispaced spatial data and
equispaced frequencies can be estimated by eσ(ϕ). Analogously in Lemma 4,
the error of the NFFT with nonequispaced frequencies and equispaced spatial
data is estimated by eσ(ϕ) too. Therefore in the following, we study mainly
the behavior of the C(T)-error constant eσ(ϕ). Our main result is Theorem
2, where we describe a general concept for the construction of a convenient
upper bound for the C(T)-error constant eσ(ϕ) with a window function ϕ ∈
Φm,N1

. Applying Theorem 2, we obtain upper bounds for eσ(ϕ) with special
window function ϕ ∈ Φm,N1

. We show that the C(T)-error constant eσ(ϕ)
of a window function ϕ ∈ Φm,N1 depends mainly on the oversampling factor
σ > 1 and the truncation parameter m ∈ N \ {1}. Since we are interested
in NFFT with relatively low computational cost, the oversampling factor σ ∈[
5
4 , 2

]
and the truncation parameter m ∈ {2, 3, . . . , 6} are restricted. These

parameters σ and m determine the shape parameter β of the window function.
For the Bessel window function (5.15), the sinh-type window function (5.21),
and the modified cosh-type window function (5.22), a good choice is the shape
parameter β = 2πm

(
1− 1

2σ

)
.

In connection with NFFT, B-spline window functions were first investigated
in [6]. In the important application of particle simulation (see [7]), the B-spline
window function was also used. Later it became clear that these methods can
be interpreted as a special case of the fast summation method, see [19,15]
and the references therein. Based on this unified approach, one can use all the
other window functions for this application too. The convenient choice of the
shape parameter is of special importance, as shown in [14] for the root mean
square error of the NFFT.

In this paper we suggest four new continuous, compactly supported window
functions for the NFFT, namely the algebraic, Bessel, sinh-type, and modified
cosh-type window function. The algebraic window function is very much re-
lated to the B-spline window function, but much simpler to compute. We show
that the Bessel window function (5.14), sinh-type window function (5.21), and
modified cosh-type window function (5.22) are very convenient for NFFT, since
they possess very small C(T)-error constants with exponential decay with re-
spect to m. It is difficult to design a window function ϕ ∈ Φm,N1

with minimal
C(T)-error constant. We prove that the best error behavior has the modified
cosh-type window function (5.22) with the shape parameter β = 2πm

(
1− 1

2σ

)
,

σ ≥ 5
4 . Further we compare several window functions with respect to the cor-

responding C(T)-error constants for the NFFT. Based on the error estimates
of the sinh-type window function, we are able to extend the error estimates,
see [21], to window functions where an analytical expression of its Fourier
transform is unknown, see [3,4,5].
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We prefer the use of compactly supported, continuous window functions ϕ ∈
Φm,N1 by following reasons:

• As explained in Remark 1, the NFFT with a window function ϕ ∈
Φm,N1 is simpler than the NFFT with a window function supported on
whole R.
• The window functions ϕ ∈ Φm,N1

presented in Section 5 (and their
Fourier transforms) have simple explicit forms and they are convenient
as window functions for NFFT.
• Few window functions ϕ ∈ Φm,N1 (such as Bessel, sinh-type, and
modified cosh-type window function) possess low C(T)-error constants
with exponential decay with respect to m. The best error behavior has
the modified cosh-type window function.

The outline of the paper is as follows. In Section 2 we introduce the basic defi-
nitions and develop the error estimates for an NFFT with a general compactly
supported, continuous window function. Important tools for the estimation of
the Fourier transforms of window functions are developed in Section 3. In Sec-
tion 4 we present a modified Paley–Wiener Theorem which characterizes the
behavior of Fourier transforms of compactly supported functions lying in a
special Sobolev space. The main results of this paper are contained in Section
5. Using the uniform norm, we present explicit error estimates for the (mod-
ified) B-spline, algebraic, Bessel, sinh-type, and modified cosh-type window
functions. Further we show numerical tests so that the C(T)-error constants
of the different window functions can be easily compared.

2 Convenient window functions for NFFT

Let ϕ̃ : T→ [0, 1] be the 1-periodization of ϕ, i.e.,

ϕ̃(x) :=
∑
k∈Z

ϕ(x+ k) , x ∈ T . (2.1)

Note that for each x ∈ R the series (2.1) has at most one nonzero term. Then
the Fourier coefficients of ϕ̃ read as follows

ck(ϕ̃) :=

∫ 1

0

ϕ̃(t) e−2πi kt dt = ϕ̂(k) , k ∈ Z .

By the properties of the window function ϕ ∈ Φm,N1 , the 1-periodic function
ϕ̃ is continuous on T and of bounded variation over

[
− 1

2 ,
1
2

]
. Then from

the Convergence Theorem of Dirichlet–Jordan (see [27, Vol. 1, pp. 57–58]), it
follows that ϕ̃ possesses the uniformly convergent Fourier expansion

ϕ̃(x) =
∑
k∈Z

ck(ϕ̃) e2πi kx , x ∈ R . (2.2)
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Lemma 1 For given ϕ ∈ Φm,N1 , the series∑
r∈Z

cn+rN1
(ϕ̃) e2πi (n+rN1) x

is convergent for each x ∈ R and has the sum

1

N1

N1−1∑
`=0

e−2πin`/N1 ϕ̃(x+
`

N1
)

which coincides with the rectangular rule of the integral

cn(ϕ̃(x+ ·)) =

∫ 1

0

ϕ̃(s+ x) e−2πins ds = cn(ϕ̃) e2πinx .

Proof. From (2.2) it follows that for all n ∈ Z and x ∈ R it holds

e−2πinx ϕ̃(x) =
∑
k∈Z

ck+n(ϕ̃) e2πi kx .

Replacing x by x+ `
N1

with ` = 0, . . . , N1 − 1, we obtain

e−2πin (x+`/N1) ϕ̃(x+
`

N1
) =

∑
k∈Z

ck+n(ϕ̃) e2πi kx e2πi k`/N1 .

Summing the above formulas for ` = 0, . . . , N1−1 and using the known relation

N1−1∑
`=0

e2πi k`/N1 =

{
N1 k ≡ 0 modN1 ,
0 k 6≡ 0 modN1 ,

we conclude that

N1−1∑
`=0

e−2πin (x+`/N1) ϕ̃(x+
`

N1
) = N1

∑
r∈Z

cn+rN1(ϕ̃) e2πi rN1x .

This completes the proof.

2.1 NFFT with noneqispaced spatial data and equispaced frequencies

Let M ∈ 2N and IM := {−M/2, 1−M/2, . . . ,M/2− 1} be given. The NFFT
with nonequispaced spatial data and equispaced frequencies is an approximate,
fast algorithm which computes approximately the values f(xj), j ∈ IM , of a
1-periodic trigonometric polynomial

f(x) :=
∑
k∈IN

ck(f) e2πi kx (2.3)
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at M nonequispaced nodes xj ∈ [− 1
2 ,

1
2 ), j ∈ IM . Using a window function

ϕ ∈ Φm,N1 , the trigonometric polynomial f is approximated by the 1-periodic
function

s(x) :=
∑
`∈IN1

g` ϕ̃(x− `

N1
) (2.4)

with conveniently chosen coefficients g` ∈ C. The computation of the values
s(xj), j ∈ IM , which approximate f(xj) is very easy. Since ϕ is compactly
supported and thus ϕ̃ is well-localized, each value s(xj), j ∈ IM , is equal to a
sum of few nonzero terms.

The coefficients g` can be determined by discrete Fourier transform (DFT) as
follows. The 1-periodic function s possesses the Fourier expansion

s(x) =
∑
k∈Z

ck(s) e2πi kx

with the Fourier coefficients

ck(s) =

∫ 1

0

s(t) e−2πi kt dt = ĝk ck(ϕ̃) , k ∈ Z ,

where

ĝk :=
∑
`∈IN1

g` e−2πi k`/N1 .

In other words, the vector (ĝk)k∈IN1
is the DFT of length N1 of coefficient

vector (g`)`∈IN1
such that

ĝk = ĝk+N1 , k ∈ Z .

In order to approximate f by s, we set

ĝk =

{
ck(f)
ck(ϕ̃)

k ∈ IN ,
0 k ∈ IN1

\ IN .

Note that the values ĝk, k ∈ IN , can be used in an efficient way. Even if (2.3) is
only known at finitely many equispaced points of [0, 1], the Fourier coefficients
ck(f), k ∈ IN , can be approximately determined by a fast Fourier transform
(FFT). For many window functions ϕ ∈ Φm,N1 , the Fourier coefficients ck(ϕ̃),
k ∈ IN , are explicitly known.

Then for all r ∈ Z, it holds

cn+rN1
(s) = ĝn cn+rN1

(ϕ̃) =

{
cn(f)

cn+rN1
(ϕ̃)

cn(ϕ̃)
n ∈ IN ,

0 n ∈ IN1 \ IN .
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In particular, we see that cn(s) = cn(f) for all n ∈ IN and cn(s) = 0 for all
n ∈ IN1 \ IN . Substituting k = n+ rN1 with n ∈ IN1 and r ∈ Z, we obtain

s(x)− f(x) =
∑

k∈Z\IN1

ck(s) e2πi kx =
∑
n∈IN1

∑
r∈Z\{0}

cn+rN1(s) e2πi (n+rN1) x

=
∑
n∈IN

cn(f)
( ∑
r∈Z\{0}

cn+rN1
(ϕ̃)

cn(ϕ̃)
e2πi (n+rN1) x

)
=
∑
n∈IN

cn(f)
( ∑
r∈Z\{0}

ϕ̂(n+ rN1)

ϕ̂(n)
e2πi (n+rN1) x

)
. (2.5)

Let A(T) be the Wiener algebra of all 1-periodic functions g ∈ L1(T) with the
property ∑

k∈Z
|ck(g)| <∞ .

Then
‖g‖A(T) :=

∑
k∈Z
|ck(g)|

is the norm of A(T). Obviously, we have A(T) ⊂ C(T), where C(T) denotes the
Banach space of all 1-periodic, continuous functions with the uniform norm

‖g‖C(T) := max
x∈T
|g(x)| .

Since xj ∈ [− 1
2 ,

1
2 ), j ∈ IM , are arbitrary nodes, we have

|s(xj)− f(xj)| ≤ ‖s− f‖C(T) .

Therefore we measure the error of NFFT ‖s− f‖C(T) in the uniform norm. As
norm of the 1-periodic trigonometric polynomial (2.3) we use the norm in the
Wiener algebra A(T).

Remark 1 The NFFT with a window function of the set Φm,N1 is simpler
than the NFFT with Kaiser–Bessel or Gaussian window function ϕ, since
both window functions are supported on whole R. For such a window function
ϕ, an additional step in the NFFT is necessary, where the 1-periodic function
(2.4) is approximated by the 1-periodic well-localized function

s1(x) :=
∑
`∈IN1

g` ψ̃
(
x− `

N1

)
,

where ψ̃ is the 1-periodization of the truncated window function (see [18, pp.
378–381])

ψ(x) :=

{
ϕ(x) x ∈ [−m/N1, m/N1] ,
0 x ∈ R \ [−m/N1, m/N1] .

Thus the NFFT with a window function ϕ supported on whole R requires also
a truncated version of ϕ. In this case, the error of the NFFT is measured by
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‖s1 − f‖C(T). In [18, p. 393], it is shown that the error of the NFFT with the
Kaiser–Bessel window function can be estimated by

‖s1 − f‖C(T) ≤ 4m3/2 e−2πm
√

1−1/σ ‖f‖A(T) .

We will see in Subsections 5.4 – 5.6 that special window functions ϕ ∈ Φm,N1

possess a similar error behavior as the Kaiser–Bessel window function.

We say that the window function ϕ ∈ Φm,N1
is convenient for NFFT, if the

C(T)-error constant
eσ(ϕ) := sup

N∈2N
eσ,N (ϕ) (2.6)

with

eσ,N (ϕ) := max
n∈IN

∥∥ ∑
r∈Z\{0}

ϕ̂(n+ rN1)

ϕ̂(n)
e2πi rN1 ·

∥∥
C(T) , N ∈ 2N ,

fulfills the condition eσ(ϕ)� 1 for conveniently chosen truncation parameter
m ≥ 2 and oversampling factor σ > 1. Later in Theorem, 2 we will show that
under certain assumptions on ϕ ∈ Φm,N1 the value eσ,N (ϕ) is bounded for all
N ∈ N. This C(T)-error constant is motivated by techniques first used in [24]
and later also in [5]. G. Steidl [24] has applied this technique for error estimates
of NFFT with B-spline and Gaussian window functions, respectively.

Lemma 2 For each N ∈ 2N, the constant eσ,N (ϕ) of ϕ ∈ Φm,N1 can be
represented in the equivalent form

eσ,N (ϕ) = max
n∈IN

∥∥ 1

N1cn(ϕ̃)

N1−1∑
`=0

e−2πin`/N1 ϕ̃(· +
`

N1
)− e2πin ·

∥∥
C(T) . (2.7)

Proof. By Lemma 1 we know that for all x ∈ T it holds( ∑
r∈Z\{0}

cn+rN1
(ϕ̃) e2πi rN1 x

)
e2πinx =

∑
r∈Z\{0}

cn+rN1
(ϕ̃) e2πi (n+rN1) x

=
1

N1

N1−1∑
`=0

e−2πin`/N1 ϕ̃
(
x+

`

N1

)
− cn(ϕ̃) e2πinx

and hence∥∥∥ ∑
r∈Z\{0}

cn+rN1
(ϕ̃)

cn(ϕ̃)
e2πi rN1 ·

∥∥∥
C(T)

=
∥∥∥ 1

N1 cn(ϕ̃)

N1−1∑
`=0

e−2πin`/N1 ϕ̃
(
·+ `

N1

)
−e2πin ·

∥∥∥
C(T)

.

This completes the proof.

Thus the condition eσ(ϕ)� 1 with (2.7) means that each exponential

e2πin · , n ∈ IN ,
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can be approximately reproduced by a linear combination of shifted window
functions ϕ̃(·+ `

N1
) with ` ∈ IN1 . In other words, the equispaced shifts ϕ̃(·+ `

N1
)

with ` ∈ IN1
are approximately exponential reproducing. For each node xj ∈

[− 1
2 ,

1
2 ), j ∈ IM , the linear combination

1

N1 cn(ϕ̃)

N1−1∑
`=0

e−2πin`/N1 ϕ̃(xj +
`

N1
) (2.8)

has only few nonzero terms, since the support of ϕ is very small for large N1.
If we replace exp(2πinxj) for each n ∈ IN and j ∈ IM by the approximate
value (2.8), we compute approximate values of

f(xj) =
∑
n∈IN

cn(f) e2πinxj , j ∈ IM ,

in the form

f(xj) ≈
1

N1

∑
`∈IN1

( ∑
n∈IN

cn(f)

cn(ϕ̃)
e−2πin`/N1

)
ϕ̃(xj +

`

N1
)

mainly by DFT. This is the key of the NFFT with nonequispaced spatial data
and equispaced frequencies. Special window functions ϕ ∈ Φm,N1

which are
convenient for NFFT will be presented in Section 5.

Lemma 3 Let σ > 1, m ∈ N \ {1}, N ∈ 2N, and N1 = σN ∈ 2N be given.
Further let ϕ ∈ Φm,N1

. Let f be a 1-periodic trigonometric polynomial (2.3)
and s its approximating 1-periodic function (2.4).
Then the error of NFFT with nonequispaced spatial data and equispaced fre-
quencies can be estimated by

‖s− f‖C(T) ≤ eσ(ϕ) ‖f‖A(T) . (2.9)

Proof. From (2.5) it follows that

s(x)− f(x) =
∑
n∈IN

cn(f)
( ∑
r∈Z\{0}

cn+rσN (ϕ̃)

cn(ϕ̃)
e2πi (n+rσN) x

)
.

Note that cn(ϕ̃) = ϕ̂(n) > 0 for n ∈ IN by assumption ϕ ∈ Φm,N1
. Then by

Hölder’s inequality we obtain that for all x ∈ T it holds

|s(x)− f(x)| ≤
∑
n∈IN

|cn(f)|
(

max
n∈IN

∣∣ ∑
r∈Z\{0}

cn+rN1
(ϕ̃)

cn(ϕ̃)
e2πi rN1 x

∣∣)
=
∑
n∈IN

|cn(f)|
(

max
n∈IN

∣∣ ∑
r∈Z\{0}

ϕ̂(n+ rN1)

ϕ̂(n)
e2πi rN1 x

∣∣)
≤ eσ(ϕ) ‖f‖A(T) <∞ .

Hence we get (2.9).
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Remark 2 Let λ ≥ 0 be fixed. We introduce the 1-periodic Sobolev space Hλ(T)
of all 1-periodic functions f : T → C which are integrable on [0, 1] and for
which

‖f‖Hλ(T) :=
(∑
k∈Z
|k|2λ|ck(f)|2

)1/2
<∞ ,

where we declare |0| := 1. Then Hλ(T) is a Hilbert space with the inner
product

〈f, g〉Hλ(T) :=
∑
k∈Z
|k|2λck(f) ck(g) .

For λ = 0, we have H0(T) = L2(T). Then the Sobolev embedding theorem (see
[23, p. 142]) says that for λ > 1

2 it holds Hλ(T) ⊂ A(T) ⊂ C(T) . Let f be a
1-periodic, trigonometric polynomial of the form (2.3). Then we have

‖f‖C(T) ≤
∑
k∈IN

|ck(f)| = ‖f‖A(T) =
∑
k∈IN

(
|ck(f)| |k|λ

)
|k|−λ .

Applying the Cauchy–Schwarz inequality, we obtain for λ > 1
2 that

‖f‖C(T) ≤ ‖f‖A(T) ≤
( ∑
k∈IN

(
|ck(f)|2 |k|2λ

)1/2( ∑
k∈IN

|k|−2λ
)1/2

≤ ‖f‖Hλ(T)
(

1 + 2

∞∑
k=1

1

k2λ

)1/2
.

Using the Riemann zeta function ζ(2λ) :=
∑∞
k=1

1
k2λ

, λ > 1
2 , we obtain the

following inequality

‖f‖C(T) ≤ ‖f‖A(T) ≤ ‖f‖Hλ(T)
√

1 + 2ζ(2λ) .

Thus under the assumptions of Lemma 3, the error of NFFT with nonequis-
paced spatial data and equispaced frequencies can be estimated by

‖s− f‖C(T) ≤ eσ(ϕ)
√

1 + 2ζ(2λ) ‖f‖Hλ(T) .

Note that

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
, ζ(10) =

π10

93555
< 1.000995 .
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2.2 NFFT with nonequispaced frequencies and equispaced spatial data

The NFFT with nonequispaced frequencies and equispaced spatial data or trans-
posed NFFT evaluates the exponential sums

sk :=
∑
j∈IM

fj e2πi kxj , k ∈ IN , (2.10)

for arbitrary given coefficients fj ∈ C and nonequispaced frequencies xj ∈[
− 1

2 ,
1
2

)
, j ∈ IM . Assume that the window function ϕ ∈ Φm,N1

is convenient
for NFFT. Introducing the 1-periodic function

g(x) :=
∑
j∈IM

fj ϕ̃(xj + x) ,

the Fourier coefficients of g read as follows

ck(g) =

∫ 1

0

g(t) e−2πi kt dt =
( ∑
j∈IM

fj e2πi kxj
)
ck(ϕ̃) = sk ck(ϕ̃) , k ∈ Z .

Using the trapezoidal rule, we approximate ck(g) by

c̃k(g) :=
1

N1

∑
`∈IN1

∑
j∈IM

fj ϕ̃
(
xj +

`

N1

)
e−2πi k`/N1 .

Note that c̃k(g), k ∈ IN , can be efficiently computed by FFT, for details see
[18, p. 382]. Then the results of this NFFT with nonequispaced frequencies
and equispaced spatial data are the values

s̃k :=
c̃k(g)

ck(ϕ̃)
, k ∈ IN . (2.11)

It is interesting that the same C(T)-error constant (2.6) appears in an error
estimate of the NFFT with nonequispaced frequencies and equispaced spatial
data too.

Lemma 4 Let σ > 1, m ∈ N \ {1}, N, M ∈ 2N, and N1 = σN ∈ 2N.
Further let ϕ ∈ Φm,N1

. For given fj ∈ C and nonequispaced frequencies xj ∈[
− 1

2 ,
1
2

)
, j ∈ IM , we consider the exponential sums (2.10) and the related

approximations (2.11).

Then the error of NFFT with nonequispaced frequencies and equispaced spatial
data can be estimated by

max
k∈IN

|sk − s̃k| ≤ eσ(ϕ)
∑
j∈IM

|fj | .
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Proof. For each k ∈ IN we have

|sk − s̃k| =
1

ck(ϕ̃)
|ck(g)− c̃k(g)|

=
∣∣∣ ∑
j∈IM

fj

(
e2πi kxj − 1

N1ck(ϕ̃)

∑
`∈IN1

ϕ̃
(
xj +

`

N1

)
e−2πi k`/N1

)∣∣∣ .
From Hölder’s inequality and Lemma 2 it follows that

|sk − s̃k| ≤ max
j∈IM

∣∣e2πi kxj − 1

N1ck(ϕ̃)

∑
`∈IN1

ϕ̃
(
xj +

`

N1

)
e−2πi k`/N1

∣∣ ∑
j∈IM

|fj |

≤ eσ,N (ϕ)
∑
j∈IM

|fj | ≤ eσ(ϕ)
∑
j∈IM

|fj | .

This completes the proof.

3 Auxiliary estimates

In our study we use later the following

Lemma 5 For −1 < u < 1 and µ > 1 it holds∑
r∈Z\{0,±1}

|u+ r|−µ ≤ 2

µ− 1
(1− |u|)1−µ .

Proof. For −1 < u < 1, r ∈ N, and µ > 1 we have

|u+ (−1)j r|−µ ≤ (r − |u|)−µ , j = 0, 1 . (3.1)

Using (3.1), the series can be estimated as follows

∞∑
r=2

|u+ (−1)j r|−µ ≤
∞∑
r=2

(r − |u|)−µ , j = 0, 1 .

Hence it follows by the integral test for convergence that∑
r∈Z\{0,±1}

|u+ r|−µ =

∞∑
r=2

|u+ r|−µ +

∞∑
r=2

|u− r|−µ ≤ 2

∞∑
r=2

(r − |u|)−µ

≤ 2

∫ ∞
1

(x− |u|)−µ dx =
2

µ− 1
(1− |u|)1−µ .

For fixed µ ≥ 0, the µth Bessel function of first kind is defined by

Jµ(x) :=

∞∑
k=0

(−1)k

2µ+2k k!Γ (µ+ k + 1)
xµ+2k , x ≥ 0 ,
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so that in particular

Jm(x) :=

∞∑
k=0

(−1)k

2m+2k k! (m+ k)!
xm+2k , m = 0, 1, . . . .

For fixed µ ≥ 0, the µth modified Bessel function of first kind is defined by

Iµ(x) :=

∞∑
k=0

1

2µ+2k k!Γ (µ+ k + 1)
xµ+2k , x ≥ 0 ,

so that in particular

Im(x) :=

∞∑
k=0

1

2m+2k k! (m+ k)!
xm+2k , m = 0, 1, . . . .

For the properties of Bessel functions we refer to [1, pp. 355–478] and [25]. In
particular, these Bessel functions possess the following asymptotic behaviors
for x→∞ (see [1, pp. 364, 377]),

Jµ(x) ∼
√

2

πx
cos
(
x− µπ

2
− π

4

) (
1 +O(x−1)

)
, (3.2)

Iµ(x) ∼ 1√
2πx

ex
(
1− 4µ2 − 1

8x
+O(x−2)

)
. (3.3)

Here we are interested in explicit error estimates for NFFT with compactly
supported, continuous window function. For this purpose, we need explicit
bounds for the Bessel functions instead of the asymptotic formulas (3.2) and
(3.3).

Lemma 6 For fixed µ > 1
2 and all x ≥ 0, it holds

∣∣x2 − µ2 +
1

4

∣∣1/4 |Jµ(x)| <
√

2

π
, (3.4)

where
√

2
π is the best possible upper bound. In particular for µ = 1 and x ≥ 6,

we have

|J1(x)| < 1√
x
.

For µ = 5
2 and x ≥ 6, we have

|J5/2(x)| < 1√
x
. (3.5)

For µ = 3m with m ∈ N \ {1} and x ≥ πm, we have

|J3m(x)| < 3

2
√
x
. (3.6)
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Proof. The inequality (3.4) was shown in [13]. For µ = 1, the inequality (3.4)
means that ∣∣x2 − 3

4

∣∣1/4 |J1(x)| <
√

2

π
.

Thus for all x ≥ 6 we have

c
√
x ≤

∣∣x2 − 3

4

∣∣1/4
with the constant

c = min
x≥6

∣∣x2 − 3
4

∣∣1/4
√
x

= min
x≥6

(
1− 3

4x2
)1/4

=
(
1− 1

48

)1/4
= 0.994750 . . .

such that

|J1(x)| ≤ 1

0.994750

√
2

πx
<

1√
x
.

Similarly, one can show the inequalities (3.5) and (3.6).

Lemma 7 Let µ ≥ 1
2 and x0 > 0 be given. Then for all x ≥ x0, it holds

√
2πx0 e−x0 Iµ(x0) ≤

√
2πx e−x Iµ(x) < 1 . (3.7)

Proof. By [2, Inequality (2.6)] one knows that for fixed µ ≥ 1
2 and arbitrary

x, y ∈ (0, ∞) with x < y it holds

Iµ(x)

Iµ(y)
<

√
y

x
ex−y ,

i.e.,
√

2πx e−x Iµ(x) <
√

2πy e−y Iµ(y) .

Hence the function f(x) :=
√

2πx e−x Iµ(x) is strictly increasing on (0, ∞).
Further by (3.3) we have

lim
y→∞

√
2πy e−y Iµ(y) = 1 .

This implies the inequality (3.7).
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4 Paley–Wiener theorem in a Sobolev space

The main tool of this approach is the study of the Fourier transform ϕ̂(v) of
ϕ ∈ Φm,N1

for |v| → ∞. A rapid decay of ϕ̂ is essential for a small C(T)-
error constant (2.6). From Fourier analytical point of view, it is very interest-
ing to discuss the relation to the known Theorem of Paley–Wiener (see [17,
pp. 12–13]), since this result characterizes the behavior of Fourier transforms
of functions ϕ which vanish outside the open interval I =

(
− m

N1
, m
N1

)
. The

smoothness of the restricted window function ϕ|I determines the decay of ϕ̂(v)
for |v| → ∞.
For simplicity, we denote functions defined on I by ϕ too. By Hk(I), k ∈ N,
we denote the Sobolev space of all functions ϕ ∈ L2(I) with Djϕ ∈ L2(I),
j = 1, . . . , k, where Djϕ is the jth weak derivative of ϕ. Then Hk(I) is a
Hilbert space with the Sobolev norm

‖ϕ‖Hk(I) :=
( k∑
j=0

‖Djϕ‖2L2(I)

)1/2
.

Further we define the Sobolev space Hk
0 (I) as the closure in Hk(I) of the

space C∞0 (I) which consists of all infinitely differentiable, locally supported
functions. Then Hk

0 (I) is the set of all functions ϕ ∈ Hk(I) with vanishing
one-sided derivatives ϕ(j)

(
± m
N1

)
= 0, j = 0, . . . k−1. We present the following

modification of the Theorem of Paley–Wiener (cf. [17, pp. 12–13] or [27, Vol. II,
pp. 272–274]):

Theorem 1 For given ϕ ∈ Hk
0 (I) with k ∈ N, the function

f(z) :=

∫
I

ϕ(t) e−2πizt dt , z = x+ i y ∈ C ,

is entire and has the following properties:
1. For real variable x, it holds f(x) ∈ L2(R) and xk f(x) ∈ L2(R).
2. For all z ∈ C, there exist a positive constant γk(ϕ) such that

|f(z)| ≤ γk(ϕ) (1 + |2πz|)−k e2πm |Imz|/N1 .

Conversely, if an entire function f satisfies the conditions 1. and 2., then the
function

ϕ(x) :=

∫
R
f(t) e2πixt dt , x ∈ R ,

has the properties ϕ|I ∈ Hk(I) and ϕ|R\I = 0. Note that∫
R
f(t) e2πixt dt := lim

R→∞

∫ R

−R
f(t) e2πixt dt

means the limit in L2(R) and that ϕ|R\I = 0 means ϕ(x) = 0 for almost all
x ∈ R \ I.
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Proof. Let ϕ ∈ Hk
0 (I) be given, i.e., Djϕ ∈ L2(I), j = 0, . . . , k, and

ϕ(j)
(
± m

N1

)
= 0 , j = 0, . . . , k − 1 . (4.1)

For arbitrary z = x+ i y ∈ C and t ∈ Ī we have

|e−2πizt| = |e−2πixt| e2πyt ≤ e2π|y| |t| ≤ e2πm |Imz|/N1

and hence

|f(z)| =
∣∣ ∫
I

ϕ(t) e−2πizt dt
∣∣ ≤ ( ∫

I

|ϕ(t)|dt
)

e2πm |Imz|/N1 . (4.2)

Since by the Schwarz inequality

‖ϕ‖L1(I) =

∫
I

|ϕ(t)| · 1 dt ≤ ‖ϕ‖L2(I) ‖1‖L2(I) =

√
2m

N1
‖ϕ‖L2(I) <∞ , (4.3)

we have ϕ ∈ L1(I) too. Since Djϕ ∈ L2(I) for j = 1, . . . , k, we have Djϕ ∈
L1(I) analogously to (4.3).
Obviously, f is an entire function, because for each z ∈ C and j ∈ N it holds

f (j)(z) =

∫
I

ϕ(t) (−2πi t)j e−2πizt dt = (−2πi)j
∫
I

tj ϕ(t) e−2πizt dt .

Using (4.1), repeated integration by parts applied to the function ϕ gives for
j = 1, . . . , k the equalities∫

I

ϕ(t)
( dj

dtj
e−2πizt

)
dt = (−1)j

∫
I

(Djϕ)(t) e−2πizt dt

such that

(−2πiz)j f(z) =

∫
I

ϕ(t)
( dj

dtj
e−2πizt

)
dt = (−1)j

∫
I

(Djϕ)(t) e−2πizt dt .

(4.4)
Hence we obtain

|2πz|j |f(z)| ≤
( ∫

I

|(Djϕ)(t)|dt
)

e2πm |Imz|/N1 . (4.5)

From (4.2) and (4.5) it follows that for all z ∈ C it holds

(1 + |2πz|)k |f(z)| ≤ γk(ϕ) e2πm |Imz|/N1

with the positive constant

γk(ϕ) :=

(
k

0

) ∫
I

|ϕ(t)|dt+
(
k

1

) ∫
I

|(Dϕ)(t)|dt+. . .+
(
k

k

) ∫
I

|(Dkϕ)(t)|dt <∞ .

By (4.4) with j = k, we have for x ∈ R the equalities

(−2πix)k f(x) = (−1)k
∫
I

(Dkϕ)(t) e−2πixt dt = (−1)k
∫
R

(Dkϕ)(t) e−2πixt dt
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such that xk f(x) ∈ L2(I) by the Theorem of Plancherel.

Now we assume that an entire function f with the properties 1. and 2. is given.
Then especially we have f |R ∈ L2(R) and

|f(z)| ≤ γk(ϕ) e2πm |Imz|/N1 , z ∈ C .

By the original Theorem of Paley–Wiener, the function

ϕ(x) :=

∫
R
f(t) e2πitx dt ∈ L2(R)

vanishes for almost all x ∈ R \ I such that ϕ|I ∈ L2(I). For t ∈ R, from f(t) ∈
L2(R) and tk f(t) ∈ L2(R) it follows tj f(t) ∈ L2(R), j = 1, . . . , k − 1, since
|tj f(t)|2 ≤ |f(t)|2 for t ∈ [−1, 1] and |tj f(t)|2 ≤ |tk f(t)|2 for t ∈ R \ [−1, 1].

Each function in L2(R) generates a tempered distribution. By the differentia-
tion property of the Fourier transform of tempered distributions we conclude
that the jth weak derivative of ϕ exists almost everywhere and that

(Djϕ)(x) =

∫
R

(2πit)j f(t) e2πitx dt ∈ L2(R) , j = 1, . . . , k.

Now we have to show that Djϕ|R\I = 0. From property 2. of the entire function
f it follows that the entire function (2πiz)j f(z) with j = 1, . . . , k fulfills the
inequality

∣∣(2πiz)j f(z)
∣∣ = |2πz|j |f(z)| ≤ γk(ϕ)

|2πz|j

(1 + |2πz|)k
e2πm |Imz|/N1 ≤ γk(ϕ) e2πm |Imz|/N1

for all z ∈ C. Applying the original Theorem of Paley–Wiener to the entire
function (2πiz)j f(z), we see that

ψj(x) :=

∫
R

(2πit)j f(t) e2πitx dt

vanishes almost everywhere in R \ I. Since ψj(x) = (Djϕ)(x) = 0 almost
everywhere, we have (Djϕ)(x) = 0 for almost all x ∈ R \ I. Hence we have
Djϕ|I ∈ L2(I) for j = 1, . . . , k such that ϕ|I ∈ Hk(I). This completes the
proof.

Unfortunately, the assumption ϕ ∈ Hk
0 (I) is too strong for the most popular

window function.
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Example 1 The triangular function ϕ(x) := 1 − N1

m |x|, x ∈ I, belongs to the
Sobolev space H1

0 (I), but doesn’t belong to H2
0 (I), since it holds ϕ

(
± m
N1

)
= 0

and ϕ′
(
± m

N1

)
6= 0. In this case, we obtain that for z ∈ C,

f(z) =

∫ m/N1

−m/N1

ϕ(t) e−2πi zt dt = 2

∫ m/N1

0

(
1− N1

m
t
)

cos(2πzt) dt

=
2m

N1

∫ 1

0

(1− s) cos
(2πm

N1
zs
)

ds =
m

N1

(
sinc

πmz

N1

)2
.

Thus Theorem 1 results in k = 1. Otherwise we observe a quadratic decay of
the Fourier transform ϕ̂, since for x ∈ R \ {0},

|f(x)| = |ϕ̂(x)| ≤ N1

mπ2
|x|−2 .

Hence we will present a better method in the following Theorem 2.

5 Special window functions

In this section, we determine upper bounds of the error constant (2.6) for
various special window functions ϕ ∈ Φm,N1

by two methods. If the series∑
n∈Z
|ϕ̂(n)| <∞ ,

then by (2.6) we have that

eσ(ϕ) ≤ sup
N∈2N

(
max
n∈IN

∑
r∈Z\{0}

|ϕ̂(n+ rN1)|
ϕ̂(n)

)
. (5.1)

This technique can be applied for (modified) B-spline window functions.

For the algebraic, Bessel, sinh-type, and modified cosh-type window functions,
we use the following argument. By Hölder’s inequality it follows from (2.6) that

eσ(ϕ) ≤ sup
N∈2N

(
min
n∈IN

ϕ̂(n)
)−1

max
n∈IN

∥∥ ∑
r∈Z\{0}

ϕ̂(n+ rN1) e2πiN1r ·
∥∥
C(T) .

Thus we show that the minimum of all ϕ̂(n) for relatively low frequencies
n ∈ IN is equal to ϕ̂(N/2) and that the series∑

r∈Z\{0}

|ϕ̂(n+ rN1)|
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is bounded for each n ∈ IN . For this we have to estimate the Fourier transform
ϕ̂(n) for sufficiently large frequencies |n| ≥ N1 − N

2 very carefully. Thus this
results in

eσ(ϕ) ≤ sup
N∈2N

( 1

ϕ̂(N/2)
max
n∈IN

∑
r∈Z\{0}

|ϕ̂(n+ rN1)|
)
.

Now we use the special structure of the given window function ϕ. Let m ∈
N \ {1} and σ > 1 be given. Assume that an even, continuous function ϕ0 :
R→ [0, 1] with suppϕ0 = [−1, 1] has following properties: ϕ0(0) = 1, ϕ0|[0, 1]
is decreasing, and its restricted Fourier transform ϕ̂0|[0,m/(2σ)] is positive and
decreasing. Let N ∈ 2N with N1 = σN ∈ 2N be given. Then the scaled
function

ϕ(x) := ϕ0

(N1x

m

)
, x ∈ R , (5.2)

is a continuous window function of the set Φm,N1
.

Theorem 2 Let σ > 1, m ∈ N \ {1}, N ∈ 2N, and N1 = σN ∈ 2N be given.
Further let ϕ ∈ Φm,N1

be a scaled version (5.2) of ϕ0. Assume that the Fourier
transform ϕ̂0 fulfills the decay condition

|ϕ̂0(v)| ≤

{
c1 |v| ∈

[
m
(
1− 1

2σ

)
, m
(
1 + 1

2σ

)]
,

c2 |v|−µ |v| ≥ m
(
1 + 1

2σ

)
,

with certain constants c1 > 0, c2 > 0, and µ > 1.
Then the constant eσ,N (ϕ) is bounded for all N ∈ 2N by

eσ,N (ϕ) ≤ 1

ϕ̂0

(
m
2σ

)[2c1 +
2c2

(µ− 1)mµ

(
1− 1

2σ

)1−µ]
.

Further, the C(T)-error constant eσ(ϕ) of the window function (5.2) has the
upper bound

eσ(ϕ) ≤ 1

ϕ̂0

(
m
2σ

)[2c1 +
2c2

(µ− 1)mµ

(
1− 1

2σ

)1−µ]
. (5.3)

Proof. Note that it holds

|ϕ̂0(v)| ≤
∫
R
ϕ0(x) dx = ϕ̂0(0) , v ∈ R .

By the scaling property of the Fourier transform, we have

ϕ̂(v) =

∫
R
ϕ(x) e−2πivx dx =

m

N1
ϕ̂0

(mv
N1

)
, v ∈ R .

For all n ∈ IN and r ∈ Z \ {0, ±1}, we obtain∣∣mn
N1

+mr
∣∣ ≥ m(2− 1

2σ

)
> m

(
1 +

1

2σ

)
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and hence

|ϕ̂(n+ rN1)| = m

N1

∣∣ϕ̂0

(mn
N1

+mr
)∣∣ ≤ mc2

mµN1

∣∣ n
N1

+ r
∣∣−µ .

From Lemma 5 it follows that for fixed u = n
N1
∈
[
− 1

2σ ,
1
2σ

]
,∑

r∈Z\{0,±1}

|u+ r|−µ ≤ 2

µ− 1

(
1− 1

2σ

)1−µ
.

For all n ∈ IN , we sustain

|ϕ̂(n±N1)| = m

N1

∣∣ϕ̂0

(mn
N1
±m

)∣∣ ≤ m

N1
c1 ,

since ∣∣mn
N1
±m

∣∣ ∈ [m(1− 1

2σ

)
, m
(
1 +

1

2σ

)]
.

Thus we estimate for each n ∈ IN ,∑
r∈Z\{0}

|ϕ̂(n+ rN1)| ≤ m

N1

[∣∣ϕ̂0

(mn
N1
−m

)∣∣+
∣∣ϕ̂0

(mn
N1

+m
)∣∣

+
∑

k∈Z\{0,±1}

∣∣ϕ̂0

(mn
N1

+mr
)∣∣]

≤ m

N1

[
2c1 +

c2
mµ

∑
r∈Z\{0,±1}

∣∣ n
N1

+ r
∣∣−µ]

≤ m

N1

[
2c1 +

2c2
(µ− 1)mµ

(
1− 1

2σ

)1−µ]
.

Now we determine the minimum of all positive values

ϕ̂(n) =
m

N1
ϕ̂0

(mn
N1

)
, n ∈ IN .

Since m |n|
N1
≤ m

2σ for all n ∈ IN , we obtain

min
n∈IN

ϕ̂(n) =
m

N1
min
n∈IN

ϕ̂0

(mn
N1

)
=

m

N1
ϕ̂0

(m
2σ

)
= ϕ̂

(N
2

)
> 0 .

Thus we see that the constant eσ,N (ϕ) can be estimated by an upper bound
which depends on m and σ, but does not depend on N . We obtain

eσ,N (ϕ) ≤ 1

ϕ̂(N/2)
max
n∈IN

∑
r∈Z\{0}

|ϕ̂(n+ rN1)|

≤ 1

ϕ̂0

(
m
2σ

) [2c1 +
2c2

(µ− 1)mµ

(
1− 1

2σ

)1−µ]
.

Consequently, the C(T)-error constant eσ(ϕ) has the upper bound (5.3).
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5.1 B-spline window function

We start with the popular B-spline window function (see [6,24]). Assume that
N ∈ 2N and σ > 1 with N1 = σN ∈ 2N are given. We consider the B-spline
window function

ϕB(x) :=
1

M2m(0)
M2m(N1x) , (5.4)

where M2m denotes the centered cardinal B-spline of even order 2m with
m ∈ N. For m = 1, we obtain the triangular window function. Using the
three-term recursion

Mm(x) =
x+ m

2

m− 1
Mm−1

(
x+

1

2

)
+

m
2 − x
m− 1

Mm−1
(
x− 1

2

)
, m = 2, 3, . . . ,

(5.5)
with

M1(x) :=


1 x ∈ (− 1

2 ,
1
2 ) ,

1
2 x ∈ {− 1

2 ,
1
2} ,

0 x ∈ R \ [− 1
2 ,

1
2 ] ,

we find

M2(0) = 1 , M4(0) =
2

3
, M6(0) =

11

20
, M8(0) =

151

315
.

Note that M2m(0) > 0 for all m ∈ N, since it holds M2m(x) > 0 for each
x ∈ (−m, m). As known, the Fourier transform of (5.4) (see [18, p. 452]) has
the form

ϕ̂B(v) =
1

N1M2m(0)

(
sinc

πv

N1

)2m
, v ∈ R ,

where

sincx :=

{
sinx/x x ∈ R \ {0} ,
1 x = 0 .

If ϕ̃B is the 1-periodization (2.1) of ϕB, then the Fourier coefficients of ϕ̃B

read as follows

ck(ϕ̃B) =

∫ 1

0

ϕ̃B(t) e−2πi kx dt = ϕ̂B(k) =
1

N1M2m(0)

(
sinc

πk

N1

)2m ≥ 0 .

Note that ck(ϕ̃B) > 0 for all k ∈ IN .
By (2.5) we see that

‖s− f‖C(T) ≤
∑
n∈IN

|cn(f)|
∑

r∈Z\{0}

cn+rN1
(ϕ̃B)

cn(ϕ̃B)
.

Now we estimate the C(T)-error constants for NFFT. Applying the special
structure of the Fourier coefficients ck(ϕ̃B) and Lemma 5, we obtain a good
upper bound (5.1) of the C(T)-error constant by this method. For a proof of
the following result see [24].
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Theorem 3 Let σ > 1, m ∈ N \ {1}, N ∈ 2N, and N1 = σN ∈ 2N. Further
m ∈ N with 2m � N1 is given. Then the C(T)-error constant (2.6) of the
B-spline window function (5.4) can be estimated by

eσ(ϕB) ≤ 4m

2m− 1
(2σ − 1)−2m ,

i.e., the B-spline window function (5.4) is convenient for NFFT.

5.2 Modified B-spline window function

Let σ ≥ 1, m ∈ N \ {1}, N ∈ 2N, and N1 = σN be given. The approach to
the B-spline window function (5.4) can be generalized to the modified B-spline
window function (see [14])

ϕmB(x) :=
1

M2b(0)
M2b(

N1b

m
x) , (5.6)

where M2b denotes the centered cardinal B-spline of order 2b ∈ N \ {1, 2},
i.e., b ∈ { 32 , 2, 5

2 , . . .}. Assume that N1b ∈ 2N and that m ∈ N fulfills the
conditions m < 2σb and b 6= m. Using the three-term recursion (5.5), we find
M3(0) = 3

4 , M5(0) = 115
192 . Obviously, it holds ϕmB ∈ Φm,N1

, where the Fourier
transform of (5.6) (see [18, p. 452]) reads as follows

ϕ̂mB(v) =
m

N1b

(
sinc

mπv

N1b

)2b
, v ∈ R .

If ϕ̃mB denotes the 1-periodization of (5.6), then the Fourier coefficients of
ϕ̃mB have the following form

ck(ϕ̃mB) =

∫ 1

0

ϕ̃mB(t) e−2πi kx dt = ϕ̂mB(k) =
m

N1b

(
sinc

mπk

N1b

)2b
.

Note that ck(ϕ̃mB) > 0 for all k ∈ IN . Let f be an arbitrary 1-periodic trigono-
metric polynomial (2.3) which we approximate by the 1-periodic function

s(x) :=
∑

`∈IN1b

g` ϕ̃mB(x− `

N1b
)

with conveniently chosen coefficients g` ∈ C. Then s possesses the Fourier
expansion

s(x) =
∑
k∈Z

ck(s) e2πi kx

with the Fourier coefficients

ck(s) =

∫ 1

0

s(t) e−2πi kx dt = ĝk ck(ϕ̃mB) ,



Uniform error estimates for nonequispaced fast Fourier transforms 23

where

ĝk =
∑

`∈IN1b

g` e−2πi k`/(N1b) .

Thus the vector (ĝk)k∈IN1b
is equal to the DFT of length N1b of the vector

(g`)`∈IN1b
and we have ĝk+rN1b = ĝk for all k ∈ IN1b and r ∈ Z. In order to

approximate f by s, we choose

ĝk =

{
ck(f)

ck(ϕ̃mB) k ∈ IN ,
0 k ∈ IN1b \ IN .

Thus we see that ck(s) = ck(f) for all k ∈ IN and ck(s) = 0 for all k ∈ IN1b\IN .
Substituting k = n+ rN1b with n ∈ IN1b and r ∈ Z, we obtain

s(x)− f(x) =
∑

k∈Z\IN1b

ck(s) e2πi kx =
∑

n∈IN1b

∑
r∈Z\{0}

cn+rN1b(s) e2πi (n+rN1b) x

=
∑
n∈IN

∑
r∈Z\{0}

cn(f)
1

cn(ϕ̃mB)
cn+rN1b(ϕ̃mB) e2πi (n+rN1b) x

such that

|s(x)− f(x)| ≤
∑
n∈IN

|cn(f)|
∑

r∈Z\{0}

|cn+rN1b(ϕ̃mB)|
cn(ϕ̃mB)

.

Then it follows by Hölder’s inequality that

‖s− f‖C(T) ≤
( ∑
n∈IN

|cn(f)|
)

max
n∈IN

∑
r∈Z\{0}

|cn+rN1b(ϕ̃mB)|
cn(ϕ̃mB)

= ‖f‖A(T) max
n∈IN

∑
r∈Z\{0}

|cn+rN1b(ϕ̃mB)|
cn(ϕ̃mB)

.

Theorem 4 Let σ ≥ 1, N ∈ 2N, 2b ∈ N \ {1, 2}, and N1b ∈ 2N with
N1 = σN . Further let m ∈ N with 2b > m and b 6= m be given.
Then the C(T)-error constant of NFFT with the modified B-spline window
function (5.6) can be estimated by

eσb(ϕmB) ≤ 4b

2b− 1
(2σb− 1)−2b ,

i.e., the modified B-spline window function (5.6) is convenient for NFFT.

Proof. Now we estimate

max
n∈IN

∑
r∈Z\{0}

|cn+rN1b(ϕ̃mB)|
cn(ϕ̃mB)

.
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For n = 0 and r ∈ Z \ {0} we have

|crN1b(ϕ̃mB)|
1 · c0(ϕ̃mB)

= 0 .

For n ∈ IN \ {0} and r ∈ Z \ {0} we obtain

|cn+rN1b(ϕ̃mB)|
cn(ϕ̃mB)

=
|n|2b

|n+ rN1b|2b
=
( |n|
N1b

)2b ∣∣ n
N1b

+ r
∣∣−2b

≤
( 1

2σb

)2b | n
N1b

+ r|−2b ,

since for n ∈ IN it holds

|n|
N1b

≤ 1

2σb
≤ 1

3
.

Using Lemma 5, we conclude that

∑
r∈Z\{0}

|cn+rN1b(ϕ̃mB)|
cn(ϕ̃mB)

≤ 1

(2σb)2b

∑
r∈Z\{0}

∣∣ n
N1b

+ r
∣∣−2b

≤ 1

(2σb)2b

[
2
(
1− |n|

N1b

)−2b
+

∑
r∈Z\{0,±1}

∣∣ n
N1b

+ r
∣∣−2b]

≤ 1

(2σb)2b

[
2
(
1− 1

2σb

)−2b
+

2

2b− 1

(
1− 1

2σb

)1−2b]
≤ 4b

(2b− 1) (2σb)2b
(
1− 1

2σb
)−2b =

4b

2b− 1
(2σb− 1)−2b

with 2σb ≥ 3.

5.3 Algebraic window function

For fixed shape parameter β = 3m with m ∈ N \ {1} and for an oversampling
factor σ > π

3 , we consider the algebraic window function

ϕalg(x) :=

{(
1− (N1x)

2

m2

)β−1/2
x ∈

[
− m

N1
, m
N1

]
,

0 x ∈ R \
[
− m

N1
, m
N1

]
.

(5.7)
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Theorem 5 Let N ∈ 2N and σ > π
3 , where N1 = σN ∈ 2N. Further let

m ∈ N \ {1} and β = 3m be given.
Then the C(T)-error constant of the algebraic window function (5.7) can be
estimated by

eσ(ϕalg) ≤ 3
√
σ

√
πmJ3m

(
πm
σ

) [1 +
2σ − 1

(6m− 1)σ

]
(2σ − 1)−3m−1/2 , (5.8)

i.e., the algebraic window function (5.7) is convenient for NFFT.

Proof. We apply Theorem 2 and introduce the unscaled algebraic window
function

ϕ0,alg(x) :=

{
(1− x2)β−1/2 x ∈ [−1, 1] ,
0 x ∈ R \

[
− 1, 1] .

Using [16, p. 8], we determine the corresponding Fourier transform

ϕ̂0,alg(v) =

∫ 1

−1
(1− x2)β−1/2 e−2πi vx dx = 2

∫ 1

0

(1− x2)β−1/2 cos(2π vx) dx

=
π (2β)!

4β β!

{
(πv)−β Jβ(2πv) v ∈ R \ {0} ,
1
β! v = 0 .

(5.9)

Thus ϕ̂0,alg(v) for v > 0 is a multiple of the function (πv)−β Jβ(2πv) which
can be represented as infinite product

1

β!

∞∏
s=1

(
1− (2πv)2

j2β,s

)
, (5.10)

where jβ,s denotes the sth positive zero of Jβ (see [1, p. 370]). Note that

j6,1 = 9.936109 . . . , j9,1 = 13.354300 . . . , j12,1 = 16.698249 . . . ,

j15,1 = 19.994430 . . . , j18,1 = 23.256776 . . . , j21,1 = 26.493647 . . . .

For β = 3m it holds jβ,1 > 3m+ π − 1
2 (see [10]). Hence by σ > π

3 we get

2πm

2σ jβ,1
<

π
σ m

3m+ π − 1
2

<
3m

3m+ π − 1
2

< 1 .

Thus each factor of the infinite product (5.10) is positive and decreasing
for v ∈

[
0, m2σ

]
. Hence by (5.9) and (5.10), the Fourier transform ϕ̂0,alg(v) is

positive and decreasing for v ∈
[
0, m2σ

]
and it holds

ϕ̂0,alg

(m
2σ

)
=

(2β)!π

4β β!

( 2σ

πm

)β
Jβ
(πm
σ

)
. (5.11)

By (3.6) we know that for |v| ≥ m
2 it holds

|Jβ(2πv)| ≤ 3

2
√

2π|v|
. (5.12)
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For |v| ≥ m
(
1− 1

2σ

)
and σ > π

3 it holds

|v| ≥ m
(
1− 1

2σ

)
>
m

2
.

Using (5.9) and (5.12), we obtain for |v| ≥ m
(
1− 1

2σ

)
the estimate

|ϕ̂0,alg(v)| ≤ 3 (2β)!

23/2 4β β!πβ−1/2
|v|−β−1/2 . (5.13)

Applying Theorem 2, we obtain

eσ(ϕ) ≤ 1

ϕ̂0

(
m
2σ

)[2c1 +
2c2

(µ− 1)mµ

(
1− 1

2σ

)1−µ]
,

where by (5.13) we have µ = β + 1
2 = 3m+ 1

2 and

c1 =
3 (2β)!

23/2 4β β!πβ−1/2
m−β−1/2

(
1− 1

2σ

)1−µ
,

c2 =
3 (2β)!

23/2 4β β!πβ−1/2
.

Using (5.11), we get the inequality (5.8).

5.4 Bessel window function

Let N ∈ 2N, m ∈ N \ {1}, and σ ∈
[
5
4 , 2

]
be given. For fixed shape parameter

β := 2πm
(
1− 1

2σ

)
, (5.14)

we consider the new Bessel window function

ϕBessel(x) :=

 1
I2(β)

(
1− (N1x)

2

m2

)
I2
(
β
√

1− (N1x)2

m2

)
x ∈

[
− m

N1
, m
N1

]
,

0 x ∈ R \
[
− m

N1
, m
N1

]
(5.15)

with N1 = σN ∈ 2N. Obviously, the Bessel window function is continuously
differentiable and compactly supported.
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Theorem 6 Let N ∈ 2N, m ∈ N \ {1}, and σ ∈
[
5
4 , 2

]
be given, where

N1 = σN ∈ 2N and 2m� N1.
Then the C(T)-error constant of the Bessel window function (5.15) with the
shape parameter (5.14) can be estimated by

eσ(ϕBessel) ≤
(
50m3 + 7

)
e−2πm

√
1−1/σ .

i.e., the Bessel window function (5.15) is convenient for NFFT.

Proof. We apply Theorem 2 and introduce the unscaled Bessel window function

ϕ0,Bessel(x) :=

{
1

I2(β)
(1− x2) I2

(
β
√

1− x2
)

x ∈ [−1, 1] ,

0 x ∈ R \ [−1, 1] .

We determine the even Fourier transform

ϕ̂0,Bessel(v) =

∫
R
ϕ0,Bessel(x) e−2πi vx dx

=
2

I2(β)

∫ 1

0

(1− x2) I2
(
β
√

1− x2
)

cos(2π vx) dx .

By [16, p. 96], this Fourier transform reads as follows

ϕ̂0,Bessel(v) =
2β2

I2(β)


√

π
2 (β2 − 4π2v2)−5/4 I5/2

(√
β2 − 4π2v2

)
|v| < m

(
1− 1

2σ

)
,

1
15 v = ±m

(
1− 1

2σ

)
,√

π
2 (4π2v2 − β2)−5/4 J5/2

(√
4π2v2 − β2

)
|v| > m

(
1− 1

2σ

)
.

(5.16)
Introducing the spherical Bessel function (see [1, pp. 437–438])

j2(x) :=

√
π

2x
J5/2(x) =

( 3

x3
− 1

x

)
sinx− 3

x2
cosx , x > 0; j2(0) := 0 ,

and the modified spherical Bessel function (see [1, p. 443])

i2(x) :=

√
π

2x
I5/2(x) =

( 3

x3
+

1

x

)
sinhx− 3

x2
coshx , x > 0; i2(0) := 0 ,

we obtain

ϕ̂0,Bessel(v) =
2β2

I2(β)


(β2 − 4π2v2)−1 i2

(√
β2 − 4π2v2

)
|v| < m

(
1− 1

2σ

)
,

1
15 v = ±m

(
1− 1

2σ

)
,

(4π2v2 − β2)−1 j2
(√

4π2v2 − β2
)
|v| > m

(
1− 1

2σ

)
.

(5.17)
Using the power series expansion of the modified spherical Bessel function i2
(see [1, p. 443]), for |v| < m

(
1− 1

2σ

)
we receive

(β2 − 4π2v2)−1 i2
(√

β2 − 4π2v2
)

=

∞∑
k=0

1

2k k! (2k + 5)!!
(β2 − 4π2v2)k .
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Hence ϕ̂0,Bessel(v) is positive and decreasing for v ∈
[
0, m

(
1 − 1

2σ

))
. Since

m
2σ < m

(
1− 1

2σ

)
for σ ≥ 5

4 , we conclude

ϕ̂0,Bessel

(m
2σ

)
=

2

I2(β)

(
1− 1

2σ

)2 (
1− 1

σ

)−1
i2
(
2πm

√
1− 1

σ

)
.

For m ≥ 2 and σ ≥ 5
4 , we maintain

2πm

√
1− 1

σ
≥ 4π

√
1− 1

σ
≥ x0 :=

4π√
5
.

Applying the inequality (3.7) with µ = 5
2 , for x ≥ x0 we obtain

i2(x) ≥ x0 e−x0 i2(x0)x−1 ex > 0.280573x−1 ex >
1

4
x−1 ex .

Hence for x = 2πm
√

1− 1
σ it follows that

i2
(
2πm

√
1− 1

σ

)
>

1

8πm

(
1− 1

σ

)−1/2
e2πm

√
1−1/σ .

Thus we see that

ϕ̂0,Bessel

(m
2σ

)
≥ 1

4πmI2(β)

(
1− 1

2σ

)2 (
1− 1

σ

)−3/2
e2πm

√
1−1/σ . (5.18)

Now we estimate the Fourier transform ϕ̂0,Bessel(v) for |v| ≥ m
(
1+ 1

2σ

)
. Using

the assumptions m ≥ 2 and σ ∈
[
5
4 , 2

]
, for |v| ≥ m

(
1 + 1

2σ

)
we get

√
4π2v2 − β2 =

√
4π2v2 − 4π2m2

(
1− 1

2σ

)2 ≥ 2πm

√(
1 +

1

2σ

)2 − (1− 1

2σ

)2
= 2πm

√
2

σ
≥ 4π

√
2

σ
≥ 4π > 6 .

By (3.5), for all x ≥ 6 it holds

|J5/2(x)| < 1√
x
.

Thus for |v| ≥ m
(
1 + 1

2σ

)
, we obtain by (5.16) that

|ϕ̂0,Bessel(v)| ≤
√

2π β2

8π3 I2(β)

(
v2 −m2

(
1− 1

2σ

)2)−3/2
.

Since the function g :
[
m
(
1 + 1

2σ

)
, ∞

)
→ R defined by

g(v) := v3
(
v2 −m2

(
1− 1

2σ

)2)−3/2
=
(
1− m2

v2
(
1− 1

2σ

)2)−3/2
,
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is decreasing and bounded from above by

g
(
m
(
1 +

1

2σ

))
=

(2σ + 1)3

(8σ)3/2
,

we receive for |v| ≥ m
(
1 + 1

2σ

)
the estimate

|ϕ̂0,Bessel(v)| ≤ m2 (2σ + 1)3

32σ
√
πσ I2(β)

(
1− 1

2σ

)2 |v|−3 . (5.19)

Finally we show that for |v| ≥ m
(
1− 1

2σ

)
it holds

|ϕ̂0,Bessel(v)| ≤ 2β2

15 I2(β)
. (5.20)

By (5.17) we have

ϕ̂0,Bessel

(
±m

(
1− 1

2σ

))
=

2β2

15 I2(β)
.

For |v| > m
(
1− 1

2σ

)
, it holds by (5.17) that

ϕ̂0,Bessel(v) =
2β2

I2(β)
(4π2v2 − β2)−1 j2

(√
4π2v2 − β2

)
.

By the definition of the spherical Bessel function j2 it holds for x > 0 that

|j2(x)| =
√

π

2x
|J5/2(x)| .

Then from [25, p. 49] it follows that for x > 0,

|J5/2(x)| ≤ 1

Γ (7/2)

(x
2

)5/2
with Γ (7/2) = 15

8

√
π such that by j2(0) = 0 we obtain the inequality

|j2(x)| ≤ 1

15
x2 , x ≥ 0 ,

and hence (5.20).
Applying (5.3) together with (5.18), (5.19), and (5.20), we conclude that

eσ(ϕBessel) ≤
[ (4π)3

15

(
1− 1

σ

)3/2
m3 + c(σ)

]
e−2πm

√
1−1/σ .

with

c(σ) :=

√
π (2σ + 1)3

8σ3/2

(
1− 1

2σ

)−2 (
1− 1

σ

)3/2
.

For σ ∈
[
5
4 , 2

]
, it holds

(4π)3

15

(
1− 1

σ

)3/2
< 50 , c(σ) < 7 .

This completes the proof.
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5.5 sinh-type and related window functions

Let N ∈ 2N, m ∈ N \ {1}, and σ ∈
[
5
4 , 2

]
be given. For fixed shape parameter

β as stated in (5.14), we consider the new sinh-type window function

ϕsinh(x) :=

{
1

sinh β sinh
(
β
√

1− (N1x)2

m2

)
x ∈

[
− m

N1
, m
N1

]
,

0 x ∈ R \
[
− m

N1
, m
N1

] (5.21)

with N1 = σN ∈ 2N. This sinh-type window function belongs to Φm,N1 . Note
that (5.21) is not piecewise continuously differentiable, since ϕ′sinh(− m

N1
+0) =

∞ and ϕ′sinh( mN1
− 0) = −∞. Note that the sinh-type window function (5.21)

can be computed much faster than the Bessel window function (5.15).

Theorem 7 Let N ∈ 2N, N ≥ 8, m ∈ N\{1}, and σ ∈
[
5
4 , 2

]
be given, where

N1 = σN ∈ 2N and 2m� N1. The shape parameter β is given by (5.14).

Then the C(T)-error constant of the sinh-type window function (5.21) with the
shape parameter (5.14) can be estimated by

eσ(ϕsinh) ≤
(
24m3/2 + 3

)
e−2πm

√
1−1/σ ,

i.e., the sinh-type window function (5.21) is convenient for NFFT.

A proof of Theorem 7 can be found in [21]. The proof based mainly on the
knowledge of the analytical Fourier transform. In [21] we consider in addi-
tion two related window functions, namely the continuous exp-type window
function

ϕexp(x) :=

{
1

eβ−1

(
eβ
√

1−(N1x/m)2 − 1
)

x ∈ I ,
0 x ∈ R \ I .

as well as the continuous cosh-type window function

ϕcosh(x) :=

 1
cosh β−1

(
cosh

(
β

√
1−

(
N1x
m

)2)− 1
)

x ∈ I ,

0 x ∈ R \ I .

The main drawback for the numerical analysis of the exp-type/cosh-type win-
dow function is the fact that an explicit Fourier transform of this window
function is unknown. Therefore we split the continuous exp-type/cosh-type
window function into a sum ψ + ρ, where the Fourier transform of the com-
pactly supported function ψ is explicitly known and where the compactly sup-
ported function ρ has small magnitude. Note that ϕexp and was first suggested
in [4,2] and a discontinuous version of ϕcosh was suggested in [4, Remark 13].
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5.6 Modified cosh-type and related window functions

For σ ∈
[
5
4 , 2

]
and m ∈ N \ {1}, we consider the modified cosh-type window

function

ϕmcosh(x) := ϕ0,mcosh

(N1x

m

)
, x ∈ R , (5.22)

where it holds

ϕ0,mcosh(x) :=

{
1

cosh β−1
cosh

(
β
√
1−x2

)
−1

√
1−x2

x ∈ (−1, 1) ,

0 x ∈ R \ (−1, 1)

with the shape parameter β as stated in (5.14). By [16, p. 6 and p. 38], its
Fourier transform reads as follows

ϕ̂0,mcosh(v) =
2

coshβ − 1

∫ 1

0

cosh
(
β
√

1− x2
)
− 1
)

√
1− x2

cos(2πvx) dx

=
π

coshβ − 1
·


[
I0
(√

β2 − 4π2v2
)
− J0(2πv)

]
|v| < β

2π ,[
1− J0(β)

]
v = ± β

2π ,[
J0
(√

4π2v2 − β2
)
− J0(2πv)

]
|v| > β

2π .

(5.23)

Note that the Fourier integral in [16, p. 38, formula 7.57] reads as follows∫ 1

0

cosh
(
β
√

1− x2
))

√
1− x2

cos(2πvx) dx =

∫ π/2

0

cosh(β cos t) cos(2πv sin t) dt

=
π

2
·


I0
(√

β2 − 4π2v2
)
|v| < β

2π ,

1 v = ± β
2π ,

J0
(√

4π2v2 − β2
)
|v| > β

2π .

Obviously, the unscaled modified cosh-type window function ϕ0,mcosh : R →
[0, 1] with the support [−1, 1] is even and continuous on R. Further the re-
stricted function ϕ0,mcosh|[0, 1] is decreasing. Now we prove that the Fourier

transform (5.23) is positive and decreasing in
[
0, β

2π

]
. First we remark that by

(5.23) it holds

ϕ̂0,mcosh(0) =
π

coshβ − 1
I0(β) > 0 ,

ϕ̂0,mcosh

( β
2π

)
=

2

coshβ − 1

[
1− J0(β)

]
>

1

coshβ − 1
> 0 ,

since J0(0) = 1 and |J0(β)| < 1
2 for β = 2πm

(
1 − 1

2σ

)
≥ 12π

5 . Using I ′0(x) =

I1(x) and J ′0(x) = −J0(x), from (5.23) it follows for all v ∈
(
0, β

2π

)
that

d

dv
ϕ̂0,mcosh(v) =

π

coshβ − 1

[
− 4π2v√

β2 − 4π2v2
I1
(√

β2 − 4π2v2
)
+2π J1(2πv)

]
.
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Since by Lemma 8 it holds the inequality√
β2 − 4π2v2 J1(2πv) ≤ 2πv I1

(√
β2 − 4π2v2

)
, v ∈

[
0,

β

2π

]
,

the Fourier transform (5.23) is decreasing in
[
0, β

2π

]
.

Lemma 8 For x ∈ [0, β] it holds√
β2 − x2 J1(x) ≤ x I1

(√
β2 − x2

)
. (5.24)

Proof. Obviously, the inequality (5.24) holds for x = 0 and x = β, since
J1(0) = I1(0) = 0. First we prove (5.24) for x ∈

(
0, β√

2

]
. By the known power

expansions

J1(x) =
x

2

∞∑
k=0

(−1)k

4k k! (k + 1)!
x2k ,

I1(x) =
x

2

∞∑
k=0

1

4k k! (k + 1)!
x2k ,

we obtain for x ∈
(
0, β√

2

]
that

J1(x)

x
=

1

2

∞∑
k=0

(−1)k

4k k! (k + 1)!
x2k , (5.25)

I1
(√

β2 − x2
)√

β2 − x2
=

1

2

∞∑
k=0

1

4k k! (k + 1)!

(
β2 − x2

)k
. (5.26)

Then from x2 ≤ β2 − x2 for x ∈
(
0, β√

2

]
it follows by (5.25) and (5.26) that

J1(x)

x
≤
I1
(√

β2 − x2
)√

β2 − x2
,

i.e., this implies the inequality (5.24) for x ∈
(
0, β√

2

]
.

In the case x ∈
[
β√
2
, β
)
, we substitute y :=

√
β2 − x2 ∈

(
0, β√

2

]
. Then we

show that

y√
β2 − y2

J1
(√

β2 − y2
)
≤ I1(y) , y ∈

(
0,

β√
2

]
.

This inequality is fulfilled, since∣∣J1(√β2 − y2
)∣∣ ≤ 1√

2

and hence

y√
β2 − y2

J1
(√

β2 − y2
)
≤ y
√

2
√
β2 − y2

≤ y

β
≤ I1(y) ,
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since it holds y
2 ≤ I1(y) for y ≥ 0 by I1(0) = 0, I ′1(0) = 1

2 and I ′′1 (y) > 0. This
completes the proof.

Thus we obtain

ϕ̂0,mcosh

(m
2σ

)
=

π

coshβ − 1

[
I0
(
2πm

√
1− 1

σ

)
− J0

(πm
σ

)]
.

From m ≥ 2 and σ ∈
[
5
4 , 2

]
it follows that

2πm

√
1− 1

σ
≥ 4π

√
1− 1

σ
≥ 4π√

5
,

πm

σ
≥ π .

Hence it holds∣∣J0(πm
σ

)∣∣ <√ 2

π

(m2π2

σ2
− 1

4

)−1/4 ≤√ 2

π

(
π2 − 1

4

)−1/4
<

1

2
.

This implies that

ϕ̂0,mcosh

(m
2σ

)
≥ π

coshβ − 1

[
I0
(
2πm

√
1− 1

σ

)
− 1

2

]
.

Further for v ∈
[
m
(
1− 1

2σ

)
, m
(
1 + 1

2σ

)]
we obtain

|ϕ̂0,mcosh(v)| = π

coshβ − 1

∣∣J0(√4π2v2 − β2
)
−J0(2πv)

∣∣ ≤ c1 =
3π

2 (coshβ − 1)
,

since it holds ∣∣J0(√4π2v2 − β2
)∣∣ ≤ 1 , |J0(2πv)| ≤ 1

2
.

Thus we can use c1 = 3π
2 (cosh β−1) as constant in Theorem 2.

Finally we determine the decay of (5.23) for |v| ≥ m
(
1 + 1

2σ

)
. We show that

|ϕ̂0,mcosh(v)| ≤ 3πm2

2 (coshβ − 1)

(
1− 1

2σ

)2
v−2 . (5.27)

By (5.23) we know that

|ϕ̂0,mcosh(v)| = π

coshβ − 1

∣∣J0(2πv√1− β2

4π2v2
)
− J0(2πv)

∣∣ .
Using the power expansion of the Bessel function J0, we obtain

J0
(
2πv

√
1− β2

4π2v2
)
− J0(2πv) =

∞∑
k=1

(−1)k (πv)2k

(k!)2

[(
1− β2

4π2v2
)k − 1

]
.

Since for k ∈ N it holds

0 ≤ 1−
(
1− β2

4π2v2
)k ≤ 1−

(
1− β2

4π2v2
)

=
β2

4π2v2
,
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we estimate∣∣J0(2πv√1− β2

4π2v2
)
− J0(2πv)

∣∣ ≤ |J0(2πv)− 1| β2

4π2v2
.

Since |J0(2πv)| ≤ 1
2 for v ≥ β

2π , we receive the inequality (5.27). Thus

c2 =
3πm2

2 (coshβ − 1)

(
1− 1

2σ

)2
, µ = 2

are the corresponding constants of Theorem 2.
For the modified cosh-type window function (5.22), we estimate the C(T)-error
constant eσ(ϕmcosh).

Theorem 8 Let σ ∈
[
5
4 , 2

]
, m ∈ N\{1}, and N1 = σ1N ∈ 2N with 2m� N1.

Then the C(T)-error constant eσ(ϕmcosh) has the upper bound

eσ(ϕmcosh) ≤ 21

4

[
I0
(
2πm

√
1− 1

σ

)
+

1

2

]−1
. (5.28)

Proof. From Theorem 2 with µ = 2 it follows that

eσ(ϕmcosh) ≤ 1

ϕ̂0,mcosh

(
m
2σ

) [2c1 +
2c2
m2

(
1− 1

2σ

)−1]
.

Since

ϕ̂0,mcosh

(m
2σ

)
≥ π

coshβ − 1

[
I0
(
2πm

√
1− 1

σ

)
− 1

2

]
and

c1 =
3π

2 (coshβ − 1)
, c2 =

3πm2

2 (coshβ − 1)

(
1− 1

2σ

)2
,

we obtain the estimate (5.28). Note that by σ ∈
[
5
4 , 2

]
it holds

3 + 3
(
1− 1

2σ

)
≤ 21

4
.

By [26] the modified Bessel function I0(x) fulfills the inequalities

ex

1 + 2x
< I0(x) <

ex√
1 + 2x

, x > 0 .

If we apply this result, then we obtain

eσ(ϕmcosh) ≤ 21

4

(
1 + 4πm

√
1− 1

σ

)[
e2πm

√
1−1/σ +

1

2
+ 2πm

√
1− 1

σ

]−1
.

This completes the proof.

Finally we consider in our numerical examples also the modified exp-type win-
dow function

ϕmexp(x) := ϕ0,mexp

(N1x

m

)
, x ∈ R ,
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where it holds

ϕ0,mexp(x) :=

{
1

exp β−1
exp
(
β
√
1−x2

)
−1

√
1−x2

x ∈ (−1, 1) ,

0 x ∈ R \ (−1, 1)

and the modified sinh-type window function

ϕmsinh(x) := ϕ0,msinh

(N1x

m

)
, x ∈ R ,

where it holds

ϕ0,msinh(x) :=

{
1

sinh β

sinh
(
β
√
1−x2

)
√
1−x2

x ∈ (−1, 1) ,

0 x ∈ R \ (−1, 1).

Note that the main idea to consider these modified window functions, comes
from the Fourier transform of the Kaiser–Besser window, see [19, Remark 1].
The modified sinh-type window function ϕmsinh is used in the NFFT package
[11], and gives very good error bounds.

Conclusion

In this paper, we present explicit error estimates for the NFFT with contin-
uous, compactly supported window function ϕ ∈ Φm,N1

. Such window func-
tions simplify the algorithm for NFFT, since the truncation error of the NFFT
vanishes. Using the C(T)-error constant of ϕ, we propose a unified approach
to error estimates of the NFFT with nonequispaced spatial data and equis-
paced frequencies as well as of the NFFT with nonequispaced frequencies and
equispaced spatial data. Further we discuss the connection with a modified
Paley–Wiener theorem.
We present two techniques to find upper bounds of the C(T)-error constant.
The second method which uses the scaling structure of the window function
ϕ, shows that the constant eσ,N (ϕ) is bounded for all N ∈ 2N. We see that
eσ(ϕ) depends essentially on the decay of the Fourier transform ϕ̂(v) for
|v| → ∞ and the positive size of ϕ̂(v) for small frequencies. For the (modified)
B-spline, algebraic, Bessel, sinh-type, and modified cosh-type window func-
tions, we present new explicit upper bounds of the corresponding C(T)-error
constants. Here we use the fact that the Fourier transforms of these window
functions are explicitly known. It is remarkable that the C(T)-error constants
of Bessel, sinh-type, and modified cosh-type window function decay exponen-
tially with respect to m. Numerical experiments verify the different behavior of
the C(T)-error constants for these window functions, see Figure 5.1. We point
out that the modified cosh-type, exp-type, and sinh-type window functions
give the best error constants, see Figure 5.2. The modified sinh-type window
function, see Section 5.6, is used in the NFFT package [11].
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Fig. 5.1 The constants eσ,1024(ϕ) of the different window functions with shape parameter
β = πm(2− 1/σ) for σ ∈ {1.25, 1.5, 2} and m ∈ {2, 3, 4, 5, 6}.
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Fig. 5.2 The constants eσ,1024(ϕ) of the different window functions with shape parameter
β = πm(2− 1/σ) for σ ∈ {1.25, 1.5, 2} and m ∈ {2, 3, 4, 5, 6} as well as the upper bounds
of the C(T)-error constants eσ(ϕ).
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Chemnitz, 2018.

16. F. Oberhettinger. Tables of Fourier Transforms and Fourier Transforms of Distribu-
tions. Springer, Berlin, 1990.

17. R.E.A.C. Paley and N. Wiener. Fourier Transforms in Complex Domains. AMS Colloq.
Publ., Providence, 1934.

18. G. Plonka, D. Potts, G. Steidl, and M. Tasche. Numerical Fourier Analysis.
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