
Time and memory requirements of the

Nonequispaced FFT

Stefan Kunis
∗

Daniel Potts
†

We consider the fast Fourier transform at nonequispaced nodes (NFFT)
and give detailed information on the time and memory requirements of its
building blocks. This manuscript reviews the state of the art approaches
and focuses within the most successful scheme on the computational most
involved part. Beside a rigorous derivation of an lookup table technique, we
compare a wide range of precomputation schemes which lead to substantially
different computation times of the NFFT. In particular, we show how to
balance accuracy, memory usage, and computation time.
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1 Introduction

This paper summarises algorithms for the discrete and fast Fourier transform at noneq-
uispaced nodes. Generalising the famous fast Fourier transform (FFT), we evaluate for
N ∈ 2N, M ∈ N, a vector of coefficients f̂ = (f̂k)k=−N

2
,..., N

2
−1 ∈ C

N , and a set of nodes

xj ∈ R the sums

fj =

N
2
−1

∑

k=−N
2

f̂ke
−2πikxj , j = 0, . . . ,M − 1.

In the multivariate setting, the discrete Fourier transform at nonequispaced nodes (NDFT)
requires O(NπM) operations for Nπ equispaced frequencies and M nonequispaced sam-
pling nodes xj ∈ R

d. In contrast, the approximate NFFT takes only O(Nπ log Nπ + M)
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floating point operations (flops), where the constant of proportionality depends in theory
solely on the prescribed target accuracy and on the space dimension d.

There is a variety of important applications which utilise the NDFT, e.g. in comput-
erised tomography [18, 32, 34, 29, 28], for fast summation algorithms [35, 36, 23], for
moving least squares approximation [12], as fast Fourier transform on the sphere [25], or
as part of the ridgelet and curvelet transforms [27, 6]. Furthermore, the reconstruction
from nonuniform samples is stated in [20, 13, 1, 26] as inversion of the NDFT and used
for example in magnetic resonance imaging [15, 39, 10] or as polar FFT [2, 14]. In each
of these applications, the actual computation of the NDFT is the computationally dom-
inant task and one has to deal with different requirements on the NFFT with respect to
the target accuracy, the usage of memory, and the actual computation time. An early
review of several algorithms for the NFFT is given in [41]. Only later, a unified approach
to fast algorithms for the present task was obtained in [38, 37] and recently, a particular
property of the Gaussian window function was utilised in [19] to speed up computations
when no precomputation is possible.

Despite the fact, that there exist a couple of tutorial papers for the NFFT (see also
[21]), the aim of this manuscript is to give detailed information on the accuracy, memory,
and time requirements of NFFT algorithms and to describe how to balance these factors.
In particular, the O(M)-step of the NFFT hides a significant constant and we focus on
a variety of precomputation schemes which lead to substantially different computation
times of the whole NFFT.

The outline of the paper is as follows. In Section 2 minor improvements in the direct
calculation of the NDFT are discussed, cf. [3]. Furthermore the unified approach to
the NFFT is reviewed and alternative NFFTs are discussed. In Section 3 we compare
different methods for the fast evaluation and precomputation of the window functions
utilised in the most popular NFFT-approach. Finally, we compare the different NFFTs
numerically in Section 4 and draw conclusions. All used algorithms are available in our
widely used software [24].

2 Notation, the NDFT and the NFFT

This section summarises the mathematical theory and ideas behind the NFFT. For
d, M ∈ N let the torus T

d := R
d/Z

d ∼ [−1
2 , 1

2)d and the sampling set X := {xj ∈ T
d :

j = 0, . . . ,M−1} be given. Furthermore, let the multi degree N = (N0, N1, . . . , Nd−1)
⊤ ∈

2Nd and the index set for possible frequencies IN := {−N0
2 , N0

2 −1}×. . .×{−Nd−1

2 ,
Nd−1

2 −
1} be given. We define the space of d-variate trigonometric polynomials TN of multi
degree N by

TN := span
{

e−2πik· : k ∈ IN

}

The dimension of this space and hence the total number of Fourier coefficients is Nπ =
N0 · . . . ·Nd−1. Note, that we abbreviate the inner product between the frequency k and
the time/spatial node x by kx = k⊤x = k0x0 + k1x1 + . . . + kd−1xd−1. For clarity of
presentation the multi index k addresses elements of vectors and matrices as well.
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2.1 NDFT

For a finite number of given Fourier coefficients f̂k ∈ C, k ∈ IN , one wants to evaluate
the trigonometric polynomial

f (x) :=
∑

k∈IN

f̂ke−2πikx (2.1)

at given nonequispaced nodes xj ∈ T
d, j = 0, . . . ,M − 1. Thus, our concern is the

computation of the matrix vector product

f = Af̂ (2.2)

where

f := (f (xj))j=0,...,M−1 , A :=
(

e−2πikxj

)

j=0,...,M−1; k∈IN

, f̂ :=
(

f̂k

)

k∈IN

.

The straight forward algorithm for this matrix vector product, which is called NDFT
in Algorithm 1, takes O(MNπ) arithmetical operations and stores no matrix elements
at all, but rather uses MNπ direct calls of the function cexp() to evaluate the complex
exponentials e−2πikxj .

Input: d,M ∈ N, N ∈ 2N
d,

xj ∈ [−1
2 , 1

2 ]d, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ IN .

for j = 0, . . . ,M − 1 do

fj = 0
for k ∈ IN do

fj+ = f̂ke−2πikxj

end for

end for

Output: values fj = f(xj), j = 0, . . . ,M − 1.

Algorithm 1: NDFT

Related matrix vector products are the adjoint NDFT

f̂ = A⊢⊣f , f̂k =

M−1
∑

j=0

fje
2πikxj ,

where the update step in Algorithm 1 is simply changed to f̂k+ = fje
2πikxj , the con-

jugated NDFT f = Af̂ , and the transposed NDFT f̂ = A⊤f where A⊢⊣ = A
⊤
. Note

furthermore, that the inversion formula F−1 = F ⊢⊣ for the (equispaced and normalised)
Fourier matrix F does not hold in the general situation of arbitrary sampling nodes for
the matrix A.
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NDFT acceleration

Algorithm 1 evaluates MNπ complex exponentials. Due to the fact that these direct
calls are more expensive than multiplications, we may basically change the update step
to fj = fje

2πixj + f̂k (d = 1), i.e., do a Horner-like-scheme, see also [3]. Hence, in general
2dM direct calls are sufficient for the computations in Algorithm 1. Note however, that
this approach looses numerical stability to some extend, cf. [40]. Trading even more
memory for the acceleration of the computation, one might precompute all entries of the
matrix A, which is only feasible for small Nπ and M , see Example 4.1 in Section 4.

NDFT method memory flops evaluations

standard - MNπ MNπ

Horner-like - MNπ 2dM
fully precomputed MNπ MNπ -

Table 2.1: Number of precomputed and stored complex exponentials (memory), the or-
der of magnitude for the number of floating point operations (flops), and the
number of evaluations for the function cexp() (evaluations).

2.2 NFFT

The most successful approach for the fast computation of (2.2), cf. [8, 5, 38, 37, 16, 15,
19], is based on the usage of an oversampled FFT and a window function ϕ which is
simultaneously localised in time/space and frequency. Basically, the scheme utilises the
convolution theorem in the following three informal steps:

1. deconvolve the trigonometric polynomial f in (2.1) with the window function in
frequency domain,

2. compute an oversampled FFT on the result of step 1., and

3. convolve the result of step 2. with the window function in time/spatial domain;
evaluate this convolution at the nodes xj .

Throughout the rest of the paper σ > 1 and n = σN ∈ N will denote the oversampling

factor and the FFT size, respectively. Furthermore, for d > 1 let σ ∈ R
d, σ0, . . . , σd−1 >

1, n = σ ⊙ N , and nπ = n0 · . . . · nd−1 denote the oversampling factor, the FFT
size, and the total FFT size, respectively. Here, we use for notational convenience the
pointwise product σ ⊙ N := (σ0N0, σ1N1, . . . , σd−1Nd−1, )

⊤ with its inverse N−1 :=
(

1
N0

, 1
N1

, . . . , 1
Nd−1

)⊤
.

The window function

Starting with a window function ϕ ∈ L2(R), which is well localised in the time/spatial
domain R and in the frequency domain R, respectively, one assumes that its 1-periodic
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version ϕ̃, i.e.,

ϕ̃ (x) :=
∑

r∈Z

ϕ (x + r)

has an uniformly convergent Fourier series and is well localised in the time/spatial do-
main T and in the frequency domain Z, respectively. Thus, the periodic window function
ϕ̃ may be represented by its Fourier series

ϕ̃ (x) =
∑

k∈Z

ϕ̂ (k) e−2πikx

with the Fourier coefficients

ϕ̂ (k) :=

∫

T

ϕ̃ (x) e2πikx dx =

∫

R

ϕ (x) e2πikx dx , k ∈ Z.

We truncate this series at the FFT length n which causes a aliasing error.
If ϕ is furthermore well localised in time/spatial domain R, it can be truncated with

truncation parameter m ∈ N, m ≪ n and approximated by the function ϕ·χ[−m
n

, m
n

] which
has compact support within the interval [−m

n , m
n ]. Furthermore, the periodic window

function can be approximated by the periodic version of the truncated window function.
For d > 1, univariate window functions ϕ0, . . . , ϕd−1, and a node x = (x0, . . . , xd−1)

⊤
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Figure 2.1: Left: Gaussian window function ϕ(x) = c e−αx2
(solid), cf. (3.1), and its

1-periodic version ϕ̃ sampled on 2m + 1 nodes x0 − m
n , x0 − m−1

n , . . . , x0 + m
n

denoted by ⋄ where x0 = 0; Right: integral Fourier transform ϕ̂ with pass
(⋄), transition, and stop band (×); for the parameters N = 30, σ = 2, n =
60, m = 6.

the multivariate window function is simply given by

ϕ (x) := ϕ0 (x0)ϕ1 (x1) . . . ϕd−1 (xd−1) , (2.3)

5



where ϕ̃(x) =
∑

r∈Zd ϕ(x + r) again denotes the 1-periodic version; an immediate ob-
servation is

ϕ̂ (k) :=

∫

Rd

ϕ (x) e2πikx dx = ϕ̂0 (k0) ϕ̂1 (k1) . . . ϕ̂d−1 (kd−1) .

For a single truncation parameter m ∈ N the window function is truncated to the cube
n−1 ⊙ [−m,m]d.

We follow the general approach of [38, 37] and approximate the complex exponentials
in the trigonometric polynomial (2.1) by

e−2πikx ≈ 1

nπϕ̂ (k)

∑

l∈In,m(x)

ϕ̃
(

x − n−1 ⊙ l
)

e−2πi(n−1⊙l)k (2.4)

where the set

In,m (x) := {l ∈ In : n ⊙ x − m1 ≤ l ≤ n ⊙ x + m1}

collects these indices where the window function is mostly concentrated (the inequalities
have to be fulfilled modulo n and for each component). After changing the order of
summation in (2.1) we obtain for xj ∈ T

d, j = 0, . . . ,M − 1, the approximation

f (xj) ≈
∑

l∈In,m(xj)





∑

k∈IN

f̂k

nπϕ̂ (k)
e−2πi(n−1⊙l)k



 ϕ̃
(

xj − n−1 ⊙ l
)

.

This causes a truncation and an aliasing error, see [37, 33] for details. As can be readily
seen, after an initial deconvolution step, the expression in brackets can be computed
via a d-variate FFT of total size nπ. The final step consists of the evaluation of sums
having at most (2m + 1)d summands where the window function is sampled only in the
neighbourhood of the node xj .

The algorithm and its matrix notation

The proposed scheme reads in matrix vector notation as

Af̂ ≈ BFDf̂ , (2.5)

where B denotes the real M × nπ sparse matrix

B :=
(

ϕ̃
(

xj − n−1 ⊙ l
)

· χIn,m(xj) (l)
)

j=0,...,M−1; l∈In

, (2.6)

where F is the d-variate Fourier matrix of size nπ ×nπ, and where D is the real nπ ×Nπ

’diagonal’ matrix

D :=

d−1
⊗

t=0

(

Ot |diag (1/ ϕ̂t (kt))kt∈INt
|Ot

)⊤
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Method memory flops evaluations

- - Nπ Nπ

PRE PHI HUT N0 + . . . + Nd−1 Nπ -

Table 2.2: Computational requirements for the deconvolution step in Algorithm 2.

with zero matrices Ot of size Nt × nt−Nt

2 . Obviously, the approximate matrix splitting

can by applied to the adjoint matrix as A⊢⊣ ≈ D⊤F ⊢⊣B⊤, where the multiplication with
the sparse matrix B⊤ is implemented in a ’transposed’ way, summation as outer loop
and only using the index sets In,m (xj).

Table 2.2 shows the computational requirements for the deconvolution step of the
NFFT. We give detailed information on the number of precomputed and stored real
numbers (memory), the order of magnitude for the number of floating point operations
(flops), and the number of evaluations for the univariate Fourier-transformed window
function ϕ̂. Precomputing the factors ϕ̂t(kt) for t = 0, . . . , d− 1 and kt ∈ INt is denoted
by its associated Flag PRE PHI HUT within the software library.

This is followed by one FFT of total size nπ. Hence, the computational complexity of
the NFFT increases for a larger oversampling factor σ, affecting both the ’deconvolution
step’ and the FFT. The time and memory requirements of the convolution and evalu-
ation step are discussed in Section 3 in detail. In summary, we propose Algorithm 2
and Algorithm 3 for the computation of the nonequispaced FFT (2.2) and its adjoint,
respectively.

Input: d,M ∈ N, N ∈ 2N
d,

xj ∈ [−1
2 , 1

2 ]d, j = 0, . . . ,M − 1, and f̂k ∈ C, k ∈ IN .

For k ∈ IN compute

ĝk :=
f̂k

nπck (ϕ̃)
.

For l ∈ In compute by d-variate FFT

gl :=
∑

k∈IN

ĝk e−2πik(n−1⊙l).

For j = 0, . . . ,M − 1 compute

sj :=
∑

l∈In,m(xj)

gl ϕ̃
(

xj − n−1 ⊙ l
)

.

Output: approximate values sj ≈ fj, j = 0, . . . ,M − 1.

Algorithm 2: NFFT
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Input: d,M ∈ N, N ∈ 2N
d,

xj ∈ [−1
2 , 1

2 ]d and fj ∈ C, j = 0, . . . ,M − 1.

Compute the sparse matrix vector product

g := B⊤f .

Apply the d-variate IFFT as
ĝ := F ⊢⊣g .

Multiply by the ’diagonal’ matrix, i.e.,

ŝ := D⊤ĝ .

Output: approximate values ŝk, k ∈ IN.

Algorithm 3: NFFT⊢⊣

Alternative NFFTs

Taylor based NFFT: A simple but nevertheless fast scheme for the computation of
(2.2) in the univariate case d = 1 is presented in [1]. This approach uses for each
node xj ∈ [−1

2 , 1
2) a m-th order Taylor expansion of the trigonometric polynomial

in (2.1) about the nearest neighbouring point on the oversampled equispaced lattice
{n−1k − 1

2}k=0,...,n−1 where again n = σN, σ ≫ 1. Besides its simple structure and
only O(N log N + M) arithmetic operations, this algorithm utilises m FFTs of size n
compared to only one in the NFFT approach, uses a medium amount of extra memory,
and is not suited for highly accurate computations, see Example 4.2. Furthermore, its
extension to higher dimensions has not been considered so far.

Multipole based NFFT: A second approach for the univariate case d = 1 is considered
in [9] and based on a Lagrange interpolation technique. After taking a N -point FFT of
the vector f̂ in (2.2) one uses an exact polynomial interpolation scheme to obtain the
values of the trigonometric polynomial f at the nonequispaced nodes xj. Here, the time
consuming part is the exact polynomial interpolation scheme which can however be re-
alised fast in an approximate way by means of the fast multipole method. This approach
is appealing since it allows also for the inverse transform. Nevertheless, numerical ex-
periments in [9] showed that this approach is far more time consuming than Algorithm
2 and the inversion can only be computed in a stable way for almost equispaced nodes
[9].

Linear algebra based NFFT: Using a fully discrete approach, one might fix the
entries of the ’diagonal’ matrix D in (2.5) first and precompute optimised entries for the
sparse matrix B to achieve higher accuracy, cf. [30, 31]. A similar approach, based on
min-max interpolation, has been taken within [15]. While these approaches gain some
accuracy for the Gaussian or B-Spline windows, no reasonable improvement is obtained
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for the Kaiser-Bessel window function. Since it is more expensive to precompute these
optimised entries of the matrix B, we do not further consider these schemes.

3 Evaluation techniques for window functions

To keep the aliasing error and the truncation error small, several univariate functions ϕ
with good localisation in time and frequency domain were proposed. For an oversampling
factor σ > 1, a degree N ∈ 2N, the FFT length n = σN , and a cut-off parameter m ∈ N,
the following window functions are considered:

1. for a shape parameter b = 2σ
2σ−1

m
π the dilated Gaussian window [8, 38, 7]

ϕ (x) = (πb)−1/2 e−
(nx)2

b , (3.1)

2. for M2m denoting the centred cardinal B-Spline of order 2m the dilated B-Spline

window [5, 38]
ϕ (x) = M2m (nx) , (3.2)

3. the dilated Sinc window [33]

ϕ (x) = sinc2m

(

(2σ − 1) N

2m
πx

)

(3.3)

with sinc(x) := sin(x) /x for x 6= 0 and sinc(0) := 1

4. and for a shape parameter b = π(2 − 1
σ ) the dilated Kaiser-Bessel window [35]

ϕ (x) =
1

π



















sinh(b
√

m2−n2x2)√
m2−n2x2

for |x| ≤ m
n ,

sin(b
√

n2x2−m2)√
n2x2−m2

otherwise.

(3.4)

Note, that the latter two have compact support in frequency domain while the second
one has compact support in time domain. Further references on the usage of (gener-
alised) Kaiser-Bessel window functions include [22, 16, 28], where some authors prefer
to interchange the role of time and frequency domain. For these univariate window
functions ϕ, the error introduced by Algorithm 2 obeys

|f (xj) − sj| ≤ Cσ,m‖f̂‖1 (3.5)

where

Cσ,m :=



































4 e−mπ(1−1/(2σ−1)) for (3.1), cf. [38],

4
(

1
2σ−1

)2m
for (3.2), cf. [38],

1
m−1

(

2
σ2m +

(

σ
2σ−1

)2m
)

for (3.3), cf. [33],

4π (
√

m + m) 4

√

1 − 1
σ e−2πm

√
1−1/σ for (3.4), cf. [33].
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Thus, for fixed σ > 1, the approximation error introduced by the NFFT decays expo-
nentially with the number m of summands in (2.4). Using the tensor product approach,
the above error estimates have been generalised for the multivariate setting in [11, 7].
Note furthermore, that it is convenient to replace the periodic window function ϕ̃ again
by the original one ϕ within the actual computation. This causes an error for functions
with large support in time/spatial domain. However, whenever the FFT-length n is
reasonable ’large’, e.g., n ≥ max{4m, 12} for the Gaussian, an easy calculation shows
that for x ∈ [−m

n , m
n ] the estimate

|ϕ̃ (x) − ϕ (x)|
|ϕ (x)| =

∑

r∈Z\{0}
e−

n2

b
r(r−2x) < 10−16

holds true, i.e., the made error is within machine precision. If the restriction on n is not
fulfilled, the NDFT method is competitive, anyway.

In the following, we suggest different methods for the compressed storage and appli-
cation of the matrix B which are all available within our NFFT library by choosing
particular flags in a simple way during the initialisation phase. These methods do not
yield a different asymptotic performance but rather yield a lower constant in the amount
of computation.

3.1 Fully precomputed window function

One possibility is to precompute all values ϕ(xj −n−1 ⊙ l) for j = 0, . . . ,M − 1 and l ∈
In,m(xj) explicitly. Thus, one has to store the large amount of (2m+1)dM real numbers
but uses no extra floating point operations during the matrix vector multiplication beside
the necessary (2m + 1)dM flops. Furthermore, we store for this method explicitly the
row and column for each nonzero entry of the matrix B. This method, included by the
flag PRE FULL PSI, is the fastest procedure but can only be used if enough main memory
is available.

3.2 Tensor product based precomputation

Using the fact that the window functions are built as tensor products one can store
ϕt((xj)t − lt

nt
) for j = 0, . . . ,M − 1, t = 0, . . . , d − 1, and lt ∈ Int,m((xj)t) where (xj)t

denotes the t-th component of the j-th node. This method uses a medium amount of
memory to store d(2m + 1)M real numbers in total. However, one has to carry out
for each node at most 2(2m + 1)d extra multiplications to compute from the factors the
multivariate window function ϕ(xj −n−1⊙ l) for l ∈ In,m(xj). Note, that this technique
is available for every window function discussed here and can be used by means of the
flag PRE PSI which is also the default method within our software library.

3.3 Linear interpolation from a lookup table

For a large number of nodes M , the amount of memory can by further reduced by the use
of lookup table techniques. For a recent example within the framework of gridding see
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[4]. We suggest to precompute from the even window function the equidistant samples
ϕt(

rm
Knt

) for t = 0, . . . , d − 1 and r = 0, . . . ,K, K ∈ N and then compute for the

actual node xj during the NFFT the values ϕt((xj)t − lt
nt

) for t = 0, . . . , d − 1 and lt ∈
Int,m((xj)t) by means of the linear interpolation from its two neighbouring precomputed
samples.

Lemma 3.1 For the univariate window functions (3.1) - (3.4) and K ∈ N the linear

interpolated window function, denoted by ϕK , fulfils

max
|x|≤m

n

|ϕ (x) − ϕK (x)| ≤



















































(

2σ − 1

σ

)3/2 π
√

2m

16K2
for (3.1) ,

m2

4K2
for (3.2) ,

m (2σ − 1)2 π2

48σ2K2
for (3.3) ,

e2πm

8K2
for (3.4) .

Proof: From standard error estimates, we know that the linear interpolated window
function ϕK fulfils

max
|x|≤m

n

|ϕ (x) − ϕK (x)| ≤ m2

8K2n2
max
|ξ|≤m

n

∣

∣ϕ′′ (ξ)
∣

∣ . (3.6)

The maximum of this second derivative is met for the window functions (3.1) - (3.4) at
ξ = 0. Thus, the assertion follows by

|ϕ′′(0)| =















































(

2σ − 1

σm

)3/2 πn2

√
2

for (3.1) ,

2n2 (M2m−2 (0) − M2m−2 (1)) for (3.2) ,

(2σ − 1)2 π2n2

6mσ2
for (3.3) ,

n2

2m3π
(bm cosh (bm) − sinh (bm)) for (3.4) ,

and the estimates M2m−2 (0)−M2m−2 (1) ≤ 1 and bm cosh(bm)− sinh(bm) ≤ 2πm e2πm.

This method needs only a storage of dK real numbers in total where K depends solely
on the target accuracy but neither on the number of nodes M nor on the multi degree
N . Choosing K to be a multiple of m, we further reduce the computational costs during
the interpolation since the distance from (xj)t− lt

nt
to the two neighbouring interpolation

nodes and hence the interpolation weights remain the same for all lt ∈ Int,m((xj)t). This
method requires 2(2m+1)d extra multiplications per node and is used within the NFFT
by the flag PRE LIN PSI.
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3.4 Fast Gaussian gridding

Two useful properties of the Gaussian window function (3.1) within the present frame-
work were recently reviewed in [19]. Beside its tensor product structure for d > 1, which
also holds for all other window functions, it is remarkable that the number of evaluations
of the form exp() can be greatly decreased. More precisely, for d = 1 and a fixed node
xj the evaluations of ϕ(xj − l′

n), l′ ∈ In,m(xj), can be reduced by the splitting

√
πbϕ

(

xj −
l′

n

)

= e−
(nxj−l′)2

b = e−
(nxj−u)2

b

(

e−
2(nxj−u)

b

)l

e−
l2

b .

where u = min In,m(xj) and l = 0, . . . , 2m. Note, that the first factor and the expo-
nential within the brackets are constant for each fixed node xj. Once, we evaluate the
second exponential, its l-th power can be computed consecutively by multiplications
only. Furthermore, the last exponential is independent of xj and these 2m+1 values are
computed only once within the NFFT and their amount is negligible. Thus, it is suffi-
cient to store or evaluate 2M exponentials for d = 1. The case d > 1 uses 2dM storages
or evaluations by using the general tensor product structure. This method is employed
by the flags FG PSI and PRE FG PSI for the evaluation or storage of 2 exponentials per
node, respectively.

3.5 No precomputation of the window function

The last considered method uses no precomputation at all, but rather evaluates the
univariate window function (2m + 1)dM times. Thus, the computational time depends
on how fast we can evaluate the particular window function. However, no additional
storage is necessary which suits this approach whenever the problem size reaches the
memory limits of the used computer.

3.6 Summary on the computational costs

The multiplication with the sparse matrix B clearly takes O(mdM) operations. Beside
this, Table 3.1 summarises the memory requirements for different strategies to store the
elements of this matrix and the extra costs it takes to multiply with this ’compressed’
matrix.

4 Numerical experiments

We present numerical experiments in order to demonstrate the performance of our al-
gorithms. All algorithms were implemented in C and tested on an AMD AthlonTMXP
2700+ with 2GB main memory, SuSe-Linux (kernel 2.4.20-4GB-athlon, gcc 3.3) using
double precision arithmetic. Moreover, we have used the libraries FFTW 3.0.1 [17] and
an extended version of NFFT 2.0.3 [24]. In order to reproduce all the numerical results,
a pre-release of the upcoming NFFT library can be downloaded from our web page [24].
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Method memory extra flops evaluations

- - ∗ mdM
FG PSI - dm,∗ dM
PRE LIN PSI dK dm,∗ -
PRE FG PSI dM dm,∗ -
PRE PSI dmM ∗ -
PRE FULL PSI mdM - -

Table 3.1: Theoretical order of magnitude for memory requirements, extra floating point
operations, and the evaluations of the window function ϕ. Furthermore,
at most 2(2m + 1)d multiplications are used within each scheme besides
PRE FULL PSI to compute the multivariate window function out of its uni-
variate factors, denoted by ∗.

Example 4.1 We start by examining accelerated NDFTs for d = 1. Using the three
proposed possibilities to compute the matrix vector product by either MN direct calls of
cexp(), a Horner-like scheme, or a fully precomputed matrix A, we obtain the following
timings for increasing N in Figure 4.1 (top-left). Clearly, the complete precomputation
of the matrix A does not pay off. The Horner-like NDFT uses no extra memory and
is considerably faster than the NDFT. Furthermore, it is faster than the default NFFT
until an break even of N = 128.

Example 4.2 Our second example concerns the Taylor expansion based NFFT, again
only for d = 1. We note that this scheme actually provides a competitive NFFT with
respect to the computation time relative to the problem size - at least within a factor,
cf. Figure 4.1 (top-right). The main drawbacks of this approach are its instability, i.e.,
it is not possible to obtain high accurate results by increasing the order m of the Taylor
expansion and hence the number of used FFTs. This fact remains even true for a very
large oversampling factor σ = 16, see Figure 4.1 (bottom-left). Furthermore, even when
the target accuracy E∞ = ‖f − s‖∞ / ‖f‖∞, cf. [1], is somewhat larger, the NFFT
needs considerable fewer arithmetic operations to reach it, cf. 4.1 (bottom-right).

Example 4.3 We now compare the computation time for the three tasks within the
NFFT, i.e., the deconvolution step, the oversampled FFT, and the convolution/evaluation
step for space dimension d = 1. Figure 4.2 shows the timings for increasing degree N ,
M = N nodes, and a fixed cut-off m = 4. The linear dependence of the computation time
with respect to the problem size can be seen for the matrix-vector multiplication with
the ’diagonal’ matrix D and the sparse matrix B whereas the FFT takes O(N log N)
operations.

For the deconvolution step we obtain a speed up of more than 3 by avoiding direct
calls of the Fourier-transformed window function ϕ̂, this method is default and turned
on by the precomputation flag PRE PHI HUT, cf. Figure 4.2 (top-left). Ways to speed
up the FFT by a more exhaustive search of an optimal FFT-plan are discussed in [17],

13



Figure 4.2 (top-right) shows for larger degree N a speed up of around 2 when we use
the planner FFTW MEASURE, which is also default within the NFFT.

The time to compute the last step of the NFFT differs from no precomputation of
the matrix entries of B to explicitly precomputed entries with PRE FULL PSI by a factor
of 20 to 100 for small degrees N ≤ 2048 and by a factor of 5 to 20 for larger degrees.
Note however, that the use of this flag with ’maximal precomputation’ is limited by the
available memory, e.g. for m = 4, and M = 220 we already need 144 MByte just for
storing the matrix entries and its indices.

Example 4.4 Furthermore, we show the timings of the convolution/evaluation step for
increasing N , the multi degree N = (N, . . . ,N)⊤, M = Nd nodes, a fixed cut-off m = 4,
and space dimension d = 2, 3 in Figure 4.3. Note, that for d = 2 and m = 4 the matrix
B has already 81 nonzero entries per row.

Example 4.5 More detailed, we focus on the convolution/evaluation step for space
dimension d = 1. Figure 4.4 shows the computation time with respect to achieved
target accuracy E2 = ‖f − s‖2 / ‖f‖2, cf. [37], by increasing the cut-off m for fixed
degree and number of nodes.

We conclude, that if no additional memory is used for precomputing the entries of the
matrix B, the Gaussian window function in conjunction with the flag FG PSI performs
best, cf. Figure 4.4 (top-left). If no precomputation is used, the particular bad behaviour
of the B-Spline window function is due to the fact that evaluating this window function
once already takes O(m) operations.

When only a small amount of memory is used for precomputations, the decision be-
tween the linear interpolated Kaiser-Bessel window function and the fast Gaussian grid-
ding with precomputation PRE FG PSI depends on the accuracy one would like to achieve
- here, the linear interpolated Kaiser-Bessel window performs better up to single preci-
sion (top-right).

Whenever at least 2mM values can be precomputed, the Kaiser-Bessel window per-
forms always best, i.e., needs the least time to achieve a given target accuracy, cf. Figure
4.4 (bottom).

Example 4.6 Finally, Figure 4.5 shows the quadratic decay of the error introduced by
the linear interpolation of the window function if the method PRE LIN PSI is used. The
decay of the error E2 coincides for all window functions up to the accuracy, they actually
can provide for a fixed cut-off m = 10.

5 Conclusions

Fast algorithms for the nonequispaced discrete Fourier transform are already known a
couple of years. Besides their asymptotic computational complexity of O(Nπ log Nπ +
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M) for Nπ equispaced frequencies and M nonequispaced sampling nodes, NFFTs differ
substantially in their computation time for interesting problem sizes. For its actual
usage, we summarise:

1. If the problem size is really small, e.g. N = M < 32 for d = 1, just use the NDFT
or its Horner-like derivative.

2. The simplest fast method is the Taylor expansion based NFFT, it achieves not
even single precision, needs a somewhat larger oversampling factor, and is slower
than window function based methods.

3. If the problem barely fits into your computer, you should use the fast Gaussian
gridding NFFT, i.e., the Gaussian window function in conjunction with the flag
FG PSI which uses no extra memory.

4. Using only a small amount of memory for precomputation and asking for high
accuracy, the fast Gaussian gridding NFFT with precomputation performs best
while storing 2d real numbers per node. However, the Kaiser-Bessel window in
conjunction with the lookup table method PRE LIN PSI with 212 precomputed
values suffices for single precision 10−8, regardless of the problem size, and out-
performs the fast Gaussian gridding. Furthermore, the lookup table is the only
precomputation method which is independent of the actual sampling set {xj}.

5. If a medium amount of memory can be used for precomputation, the Kaiser-Bessel
window function performs best. The tensor product based precomputation scheme
PRE PSI yields a faster NFFT than the lookup table method or the fast Gaussian
gridding with precomputation, but stores for each node dm real numbers. For
small to medium size problems, one can gain another factor 2 to 5 by means of an
fully precomputed window function PRE FULL PSI. However, this causes a storage
cost of md real numbers per sampling node.

6. Default precomputation methods, selected by the simple initialisation routine of
the NFFT, are: PRE PHI HUT for the deconvolution step, the flag FFTW MEASURE for
planning the FFT, and the tensor product based precomputation scheme PRE PSI

for the convolution/evaluation step. Furthermore, the Kaiser-Bessel window func-
tion is selected as default at compilation.
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[13] H. G. Feichtinger, K. Gröchenig, and T. Strohmer. Efficient numerical methods in
non-uniform sampling theory. Numer. Math., 69:423 – 440, 1995.

[14] M. Fenn, S. Kunis, and D. Potts. On the computation of the polar FFT. Appl.

Comput. Harmon. Anal., to appear.

[15] J. A. Fessler and B. P. Sutton. Nonuniform fast Fourier transforms using min-max
interpolation. IEEE Trans. Signal Process., 51:560 – 574, 2003.

16



[16] K. Fourmont. Non equispaced fast Fourier transforms with applications to tomog-
raphy. J. Fourier Anal. Appl., 9:431 – 450, 2003.

[17] M. Frigo and S. G. Johnson. FFTW, C subroutine library. http://www.fftw.org.

[18] D. Gottlieb, B. Gustafsson, and P. Forssen. On the direct Fourier method for
computer tomography. IEEE Trans. Med. Imag., 9:223 – 232, 2000.

[19] L. Greengard and J.-Y. Lee. Accelerating the nonuniform fast Fourier transform.
SIAM Rev., 46:443 – 454, 2004.
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Figure 4.1: Comparison of different NDFTs and the Taylor expansion based NFFT with
the (window function based) NFFT for the univariate case d = 1. Top: Com-
putation time in seconds with respect to increasing degree N = 24, . . . , 222

and M = N . Left: NDFT (solid), Horner-like NDFT (dashed), Multiplica-
tion with fully precomputed Matrix A (dash-dot), the curve 10−8N2 (dot-
ted), and default NFFT, i.e. Kaiser-Bessel window, σ = 2, m = 6 and
precomputation methods PRE PHI HUT and PRE PSI (⋄). Right: Taylor ex-
pansion based NFFT with σ = 4, m = 6 (solid), NFFT with σ = 2, m = 6,
and precomputed fast Gaussian gridding PRE FG PSI, which uses the same
amount of memory (dashed), and the curve 10−7N log N (dotted). Bottom:

Accuracy of the Taylor expansion based NFFT and the NFFT with respect
to increasing Taylor-order/cut-off m = 1, . . . , 20, fixed degree N = 4096 and
M = N nodes. Different oversampling factors are denoted for the Taylor
expansion based NFFT as σ = 1.5 (solid), σ = 2 (⋄), σ = 16 (dash-dot) and
for the NFFT as σ = 1.5 (dashed), σ = 2 (×), and σ = 16 (dotted). The
NFFT is used with precomputed fast Gaussian gridding PRE FG PSI. Left:
Accuracy of the Taylor expansion based NFFT with respect to increasing
order m of the Taylor expansion and accuracy of the NFFT with respect to
increasing cut-off m. Right: Computation time in seconds with respect to
achieved target accuracy E∞. 19
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Figure 4.2: Computation time in seconds with respect to increasing degree N =
24, . . . , 220, M = N nodes, d = 1, cut-off m = 4, and oversampling fac-
tor σ = 2. Window functions are denoted (top-left) and (bottom-left) by:
Gaussian (solid), Kaiser-Bessel (dashed), Sinc (dash-dot), and B-Spline (dot-
ted). Top: Left: Deconvolution step, i.e., multiplication with the ’diago-
nal’ matrix D, where the method with precomputation PRE PHI HUT is de-
noted by ⋄. Right: Oversampled FFT of length n = σN , planner flags
are FFTW ESTIMATE (solid) and FFTW MEASURE (dashed). Furthermore, the
curves 10−8N log N (dash-dot) and 4 · 10−8N (dotted) are shown. Bot-

tom: Convolution/evaluation step, i.e., multiplication with the sparse ma-
trix B. Left: Comparing the different window functions without any pre-
computation, denoted as above and the fast Gaussian gridding FG PSI (⋄).
Right: Precomputed Gaussian window function with all proposed meth-
ods, i.e., PRE LIN PSI (solid), PRE FG PSI (dashed), PRE PSI (dash-dot), and
PRE FULL PSI (dotted).
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Figure 4.3: Computation time of the multivariate convolution/evaluation step in seconds
with respect to increasing multi degree N = (N, . . . ,N)⊤, cut-off m = 4,
and oversampling factor σ = 2. Top: Space dimension d = 2, degree N =
24, . . . , 210 and M = N2 nodes. Bottom: Space dimension d = 3, degree
N = 24, 25, 26 and M = N3 nodes. Window functions and precomputations
are shown as in Figure 4.2 (bottom).
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Figure 4.4: Computation time in seconds with respect to target accuracy for increasing
cut-off m = 1, . . . , 20, fixed degree N = 1024, M = N nodes, and d = 1.
Window functions: Gaussian (solid), Kaiser-Bessel (dashed), Sinc (dash-
dot), and B-Spline (dotted). Top: Left: No precomputation, fast Gaussian
gridding without precomputation FG PSI is denoted by ⋄. Right: Linear in-
terpolated window function PRE LIN PSI from lookup table with K = 211m
precomputed values achieving single precision 10−8; and fast Gaussian grid-
ding with precomputation PRE FG PSI (⋄). Bottom: Left: Tensor product
based precomputation PRE PSI. Right: Fully precomputed matrix B, i.e.
PRE FULL PSI.
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Figure 4.5: Accuracy of the NFFT with linear interpolated window function with respect
to the size of the lookup table K = 2m, 4m, . . . , 216m for cut-off m = 10,
fixed degree N = 1024, M = N nodes, and d = 1.
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