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SUMMARY

We develop a new algorithm for the fast computation of matrix—vector—products with special matrices.

More precisely we develop a method for the fast computation of sums f(y;) := Eszl arK(y; —zr) at
nonequispaced nodes z and y; (j =1,..., M) which requires only O(Nlog N + (M + N)) arithmetic
operations. Our algorithm is based on a novel approach to fast discrete trigonometric transforms at
nonequispaced nodes.
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1. Introduction

The fast computation of special structured discrete sums or from the linear algebra point of
view of products of vectors with special structured dense matrices is a frequently appearing task
in the study of particle simulations, in the numerical solution of integral equations and in the
approximation of functions by radial basis functions. Various algorithms were designed to speed
up the summation process, e. g., the fast multipole method [8, 1], the panel clustering method
[10], the theory of H—matrices [9], mosaic—skeleton approzimations [19], multiresolution based
methods [4] and wavelet methods [3]. Recently, a fast summation algorithm based on the fast
Fourier transform at nonequispaced nodes (NFFT) was developed [14] which allows a simple
incorporation of different kernels K. The objective of this paper is to improve this NFFT based
summation algorithm for real input data by applying fast trigonometric transforms instead
of fast Fourier transforms (FFT). To achieve our goal we have to develop fast algorithms
for the discrete cosine transform at nonequispaced nodes (NDCT) and for the discrete sine
transform at nonequispaced nodes (NDST), respectively. Our approach is based on the NFFT
and seems to be easier than the Chebyshev transform based derivation in [13] and faster than
the algorithm in [18] which still uses FFTs. Instead of FFTs we use fast algorithms for the
discrete cosine transform (DCT-I) and for the discrete sine transform (DST-I) of type I.
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2 MARKUS FENN AND DANIEL POTTS

The remainder of this paper is organized as follows: in Section 2 we present our fast
algorithms for the NDCT and the NDST which we call NFCT and NFST, respectively. In
Section 3 we apply these algorithms for the fast computation of sums of the form

N
k=1

where f = (f(yj))j, a=(u),, K= (K- xk))jk and K are special even kernels, e. g.,
1 1
a7 log |z|, % log |z|. (1.2)

Finally, we present numerical examples in Section 4.

2. Fast trigonometric transforms at nonequispaced nodes

In the following we develop fast algorithms for trigonometric transforms at nonequispaced
nodes. Our approach is based on the NFFT (see e. g. [17, 15]), which we introduce first.

2.1. The NFFT
The NDFT consists in the evaluation of the 1-periodic trigonometric polynomial
n—1
)= 30 fF ezt (2.1)
k=—n

at the nodes v; € [-1/2,1/2) (j = 1,...,M). We want to present a fast approximative
algorithm for the NDFT. Let ¢ be an even window function so that its I—periodic version
@) = Y ,.czwp(v+r) has an absolute convergent Fourier series. We introduce the
oversampling factor ¢ > 1 and approximate f¥ by

on—1
- l
s51(v) := Z !JHP(U—%);

l=—0on

i.e., we want to define g; such that s; ~ f¥. We rewrite s; as Fourier series, such that

siv) = > geck(@)e R

kEZ
on—1 on—1
— Z 9k k(@) e~ 2mikv Z Z Gk Ch20mr (B) e—27r1(k+2<7n7‘)v’ (2.2)
k=—on re€Z\{0} k=—on
where
on—1 1 on—1
By e— ikl /(on) — ~ —mikl/(on) 9.
gi= ) qie . D gwe (2.3)
l=—on k=—on
and
1/2
cr(Q) == / p(v)e?™kv dy = /go(v)ez’rik” dv (keZ).
—1/2 R
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NONEQUISPACED TRIGONOMETRIC TRANSFORMS 3

Suppose that the Fourier coefficients ¢ () become sufficiently small for |k| > on and that
ck(p) #0 for k= —n,...,n — 1. Then, comparing (2.2) with (2.1), we set for r € Z

PO _ f,f/ck(cﬁ) k=-n,...,n—1,
gk'_gk+2mr—{ 0 k=-on,...,~n—1;k=mn,...,on— 1. (24)

Now the values g; can be obtained from (2.3) by a (reduced) FFT of size 2on. Assume
further that ¢ is also well-localized in time domain such that si(v;) (j = 1,...,M) can
be approximated by the truncated sum

[20nv; |+ (m—1)

IF(v)) ~ s1(v)) = s(v;) := > gl<,5(1)j_ l ) (2.5)

I=[20nv; | —(m—1) 2om

which contains at most 2m — 1 nonzero summands. In summary, the NFFT approximates
f¥(v;) by computing s(v;) via (2.4), (2.3) and (2.5) with O(onlog(on) + mM) arithmetic
operations.

To keep the error | f¥(v;) — s(v;)| small, several window functions ¢ with good localization
in time and frequency domain were proposed, e. g., the Gaussian [6, 17, 5], cardinal central
B-splines [2, 17, sinc functions [12] or Kaiser-Bessel functions [11, 7]. A detailed analysis
of the approximation errors can be found in the corresponding papers. See also [12] for a
numerical comparison of the NFFT with different window functions and different choices for
the parameters o and m.

2.2. The NFCT
Let us turn to the NDCT. For given real data fC € R and arbitrary nodes v; € [0,1/2]
(j =1,..., M) we are interested in the fast and robust computation of
n—1
FCwy) = £7 =" f cos(2mkvy). (2.6)
k=0

Choosing ff € R (k=0,...,n —1) with ff = fF, and fF, = 0 in (2.1) we obtain

n—1 n—1
)= fi e =" 2, fi cos(2mkv),
k=—n k=0
where €,0 = €p, = 1/2 and &, := 1 (k = 1,...,n — 1). Consequently, we have for

fC = 2en4fF that fC(v) = fF(v). Since @ is even, we verify that cx(@) = c_x(@) and
further by (2.4) that gx = g—r (k =1,...,0n — 1). Using this symmetry and (2.3), we get for
1=0,...,on that

on—1
1

. 1 kl
- = 5 o—mkl/(on) — ~ A . 2.
g=5— D Gre — ;em,k gr cos (m) (2.7)

k=—on
Note that gagnr—; = g1 (r € Z). Finally, we compute as in (2.5) the sums

[20nv;+(m—1)

F(wy) m s(v) = > guP (Uj l > : (2.8)

I=|20nv; |—(m—1) 2om
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4 MARKUS FENN AND DANIEL POTTS

In summary, we obtain the following algorithm for the fast computation of (2.6) with
arithmetic complexity O(onlog(on) + mM):

Algorithm 2.1. (NFCT)

Input: n, M €N, 0> 1, fCeR (k=0,...,n—1),v; €[0,1/2] (j = 1,..., M).

Precomputation: ¢, (¢) (k=0,...,n —1),
Gvj—35) (= 1,...,]\{;l = [20nv;| — (m —1),...,[20nv;] + (m — 1))

_ N /5

1. For k=0,...,n—1 compute g := e rCn(P)

2. Forl=0,...,on compute g; by (2.7) by a fast DCT-I of length on.

3. For j =1,..., M compute s(vj) by (2.8).

Output: s(v;) approximate values for f€(v;).

and for k =mn,...,on set g := 0.

2.3. The NFST

Now we are interested in the fast and robust computation of the NDST. For given real data
f2 € R and arbitrary nodes v; € [0,1/2] (j = 1,..., M) we have to compute

n—1
fSwy) = 7= fi sin(2rkv;) . (2.9)
k=1
We consider again (2.1) and assume that f,f € R with ffk = —f,f (k=1,...,n—1) and that
/¥ = fF,=0. Then

n—1 n—1
) = Z fF o2k = —iz 2fF sin(2rkv).

k=—n k=1
Consequently, we have for f5 = 2fF that fS(v) = if¥(v). This time, equation (2.4) yields
gr=—g-r (k=1,...,0on—1). Thus, for  =0,...,0n (2.7) becomes
i on—1 1 on—1 7kl
: _ ~ —ﬂikl/(an) _ o~ H 0 . 21
g =5— Y gre — > gksm(m> (2.10)
k=—on k=1
Note that gapnr—1 = —gi (r € Z). Finally, we compute as in (2.5) the sums
[20nv; 1+ (m—1) I
fs(vj) = ifF(vj) ~is(v;) = Z igi @ (vj — %> . (2.11)
I=|20nv;]—(m—1)
In summary, we obtain the following algorithm for the fast computation of (2.9) with
arithmetic complexity O(onlog(on) + mM):

Algorithm 2.2. (NFST)
Input: n, M €N, 0> 1, fSeR (k=1,...,n—1),v; €[0,1/2] j = 1,..., M).
Precomputation: ¢ (@) (k=1,...,n —1),

Gvj—5) (= 1,...,M;l= [20nv;| — (m —1),..., [20nv;] + (m — 1))

S
1. Fork=1,...,n—1 compute g, := fk~ and for k =0,n,...,on set g := 0.
2¢ck(9)
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2. Forl=0,...,on compute g; by (2.10) by a fast DST-I of length on.
3. For j =1,...,M compute is(v;) by (2.11).
Output: is(v;) approximate values for f5(v;).

Since we have derived the fast algorithms for the NDCT and NDST from the NFFT, the
analysis of the approximation error is straightforward.

The NDCT and the NDST can be interpreted as matrix—vector multiplication with the

matrices Cy := (cos 2mkv;) ;, and Sy := (sin 27kv;),;, with v := (vj)j.
In a similar way as for the NFFT [15] we can develop fast algorithms for the computation of

M

A = focos(%rkvj) (k=0,...,n),
7j=1

R M

hy = ) fisin@rkv;) (k=1,...,n—1),
7j=1

i. e. , for the matrix—vector multiplication with the transposed matrices C% and S%. We refer
to these algorithms as NFCTT and NFSTT, respectively.

3. Fast summation

In this section, we present an algorithm for the fast computation of sums of the form (1.1).
We follow the approach presented in [14]. We suppose that z,y; € [0,1/2—a/(2n)], where we
specify the parameter a later. We regularize K near 0 and near the boundary 1/2 to obtain a
smooth 1-periodic even kernel

TI(JE) ifz e [0 L),

' 2n
Kg(z) = Ta(z) ifze (35— 5,3 (3.1)

K(z) otherwise,

where

and where p € N and n < N, are appropriate parameters, which will be chosen later. The
coefficients a;- and a? are determined by

10 () = K (&) and T (3= £) =K (= £) (¢ =0.p= 1

2n 2n

and can be computed by solving small linear systems of equations. Then we approximate Kg
by the cosine series Krc given by

n—1 n . .
2en
Kge(z) = E b cos(2wlx), where by := % E en ;KR (ZJ_n) cos (%) . (3.2)
1=0 j=0
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6 MARKUS FENN AND DANIEL POTTS

Regarding that K = Kng+ Kgr+ Kgrc with Kng := K— KR, Kggr := Kr— Kgrc and assuming
that Kgr becomes sufficiently small, we approximate K by Kng + Krc and consequently f
by f(y) := fnu(y) + fro(y), where

N N

fro() ==Y arKro(y—2zi) and  fuw(y) =) arKnr(y — o).
k=1 k=1
These sums can be evaluated in an efficient way as follows: supposing that every interval of
length 1/(2n) contains at most v points xy, the evaluation of fyg at the M points y; requires
only O(avM) arithmetic operations. We can rewrite frc as

N n—1
fro) = D Y bicos(2nl(y — )
k=1 1=0
N n—1
= Z ag Z by (cos(27ly) cos(2mlzy) + sin(27ly) sin(27lzy)).
k=1 =0

The expressions in the inner brackets of

n—1 N
fre(y;) Z b (Z ay, cos(2mlxy, ) cos(2mly;) + Z b (Z ay, sin(27rlxk)> sin(27ly;)
1=0 1=1 k=1
can be computed by NFCTT /NFSTT. This will be followed by 2n multiplications with b; and
completed by NFCT/NFST to compute the outer summations.
In summary we obtain the following fast summation algorithm:

Algorithm 3.1.

Input: Nyn,M €N, 0 > 1, ag, 2 (k=1...,N),y; (j=1,...,M).
Precomputation: a}, af (j =0,...,p—1),b (1=0,...,n—1) by (3.2) and (3.1),
Kne(y; — wk) forallj=1,....M, k€ I,I:{E(yj),

where IN0(y;) == {k € {1,...,N} : [y; — x| < &£ }.
1. Forl=0,...,n—1 compute by NFCTT resp. NFSTT

N N
= Z ay, cos(2mlxy,) and a : Z ay sin(2wlzy) .
k=1 k=1
2. For1=0,...,n—1 compute the products d{ := a"b, and d; := a}b;.
3. For j =1,...,M compute by NFCT resp. NFST
n—1 n—1
Cy;) == Z dy’ cos(2ly;) and  f5(y;) Z d? sin(2mly;) .
1=0 I=1
4. For j =1,...,M compute the near field summations
fNe@) = Y aKue(y; — o)
keINE (y;)

5. For j =1,...,M compute the sums f(y;) = f¢(y;) + f5(y;) + fne(y;)-

Copyright © 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 00:1-8
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Output: f(y;) approximate values for f(y;).

Our algorithm requires (’)(N logN + M ) arithmetic operations. Error estimates can be
obtained in the same way as in [14]. It follows that ¢ = p and n = N/2 is a good choice for
the parameters, where p is responsible for the approximation error (see Figure 2).

With D := diaug;(bl)1 and Kng = (Kng(y; — xk))Jk Algorithm 3.1 reads in matrix—form

Ko~ (CyDch + SyDKS;, + KNE) «.

4. Numerical Examples

In this section, we present numerical examples for the fast summation based on our
NFCT/NFST. We always apply the NFCT/NFST with Kaiser-Bessel function ¢ and
oversampling factor o = 2. All algorithms were implemented in C and tested on an AMD
Athlon(tm) XP1800+, 512MB RAM, SuSe-Linux, using double precision arithmetic. The
DCT/DST implementation was taken from the “Numerical Recipes in C” [16]. The coefficients
oy, were randomly distributed in [0, 1] and the nodes z = y (M = N) were randomly chosen
in [O,% — 5-]. In Algorithm 3.1 we have set n = N/2. Every entry presents the arithmetic
mean of 20 runs of the algorithm.

Figure 4.1 compares the CPU time of our Algorithm 3.1 and of Algorithm 3.1 in [14] based
on the NFFT for K(z) = 1/|z| and a = p = m = 4 as function of the problem size N. The
approximation error

N (RS (D]
B = max SHES

of the fast approximative algorithms for these computations is about 1075.

80 ! !
70—Eb3--+--- o
60 - L
50 |- i
10 |- -
30 - s
20 |- o |
0 -

0 | | | |
0 500000 le+-06 1.5e+06 2e+06

Figure 4.1. CPU time (in sec) of (a) Algorithm 3.1 and (b) Algorithm 3.1 in [14] in dependence on N.

Figure 4.2 presents the error E introduced by our Algorithm 3.1 as function of the
parameters a = p for the different kernels (1.2). We have chosen N = 1024 and m = 8 to
ensure that the NFCT/NFST don’t introduce additional errors.
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Figure 4.2. Error Eo of Algorithm 3.1 in dependence on a = p for the kernels (1.2).
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